Chương 5:
Các hạt cơ bản và các lực trong tự nhiên
Aristotle tin rằng toàn bộ vật chất trong vũ trụ được tạo thành từ bốn yếu tố cơ bản: đất, không khí, nước và lửa. Các yếu tố này được tác động bởi hai lực: lực hấp dẫn có xu hướng làm chìm xuống đối với đất và nước và lực nâng có xu hướng làm nâng lên đối với không khí và lửa. Sự phân chia nội dung của vũ trụ thành vật chất và các lực như thế vẫn còn được dùng cho đến ngày nay.
Aristotle cũng tin rằng vật chất là liên tục, tức là người ta có thể phân chia một mẩu vật chất ngày càng nhỏ mà không có một giới hạn nào: người ta không bao giờ đi tới một hạt vật chất mà không thể phân chia được nữa. Tuy nhiên một số ít người Hy Lạp, chẳng hạn như Democritus, lại cho rằng vật chất vốn có dạng hạt và vạn vật được tạo thành từ một số lớn các loại nguyên tử (atom) khác nhau (atom theo tiếng Hy Lạp có nghĩa là “không thể phân chia được nữa”). Cuộc tranh cãi kéo dài hàng thế kỷ mà không bên nào có một bằng chứng thực tế nào. Mãi tới năm 1830, John Dalton - nhà vật lý và hóa học người Anh - đã chỉ ra rằng việc các hợp chất hóa học luôn luôn được hóa hợp theo những tỷ lệ nhất định có thể được giải thích là do các nguyên tử đã cụm lại với nhau tạo nên những đơn nguyên gọi là phân tử. Tuy nhiên, cho tới tận những năm đầu thế kỷ này, cuộc tranh luận giữa hai trường phái tư tưởng mới ngã ngũ với phần thắng thuộc về những người theo nguyên tử luận. Einstein là người đã đưa ra được một bằng chứng vật lý quan trọng. Trong một bài báo viết năm 1905, chỉ ít tuần trước bài báo nổi tiếng về thuyết tương đối hẹp, Einstein đã chỉ ra rằng cái được gọi là chuyển động Brown - tức là chuyển động không đều đặn, ngẫu nhiên của các hạt bụi lơ lửng trong một chất lỏng - có thể được giải thích như là kết quả của sự va chạm của các nguyên tử chất lỏng với các hạt bụi. Vào thời gian đó cũng đã có những nghi ngờ đối với giả thuyết cho rằng các nguyên tử là không thể phân chia được. Vài năm trước đó, một nghiên cứu sinh của trường Trinity College, Cambridge, là J.J. Thomson đã chứng minh được sự tồn tại của một hạt vật chất mà ông gọi là electron. Đó là một hạt có khối lượng nhỏ hơn khối lượng của nguyên tử nhẹ nhất khoảng một ngàn lần. Ông đã dùng một dụng cụ khá giống với chiếc đèn hình của một máy thu hình hiện đại: một sợi kim loại nóng đỏ phát ra các hạt electron và bởi vì các hạt này mang điện âm nên có thể dùng một điện trường để gia tốc của chúng hướng tới một màn phủ photpho. Khi các hạt này đập vào màn, chúng sẽ gây ra những chớp sáng. Chẳng bao lâu sau, người ta thấy rằng các hạt electron đó bắn ra từ chính bên trong các nguyên tử và vào năm 1911, nhà vật lý người Anh Ernest Rutherford cuối cùng đã chứng tỏ được rằng các nguyên tử vật chất có cấu trúc bên trong: chúng tạo bởi một hạt nhân cực kỳ nhỏ mang điện dương và các electron quay quanh hạt nhân đó. Ông rút ra điều này từ việc phân tích sự lệch hướng của các hạt alpha - hạt mang điện dương do các nguyên tử phóng xạ phát ra - khi va chạm với các nguyên tử Thoạt đầu người ta nghĩ rằng hạt nhân nguyên tử được tạo bởi electron và một số hạt mang điện dương gọi là proton (theo tiếng Hy Lạp proton có nghĩa là “đầu tiên”, vì người ta nghĩ rằng nó là đơn nguyên cơ bản tạo nên vật chất). Tuy nhiên, vào năm 1932 một đồng nghiệp của Rutherford ở Cambridge là James Chadwick đã phát hiện ra rằng hạt nhân còn chứa một hạt khác gọi là neutron. Đó là hạt có khối lượng gần như proton nhưng không mang điện. Chadwick đã được trao giải thưởng Nobel vì phát minh này và được bầu làm hiệu trưởng của trường Gonville và Caius College, Cambridge (trường mà hiện tôi là thành viên của ban giám hiệu). Sau này ông đã phải từ chức hiệu trưởng vì bất đồng với các thành viên trong ban giám hiệu. Sự bất đồng trong trường còn gay gắt hơn khi nhóm các thành viên lãnh đạo trẻ trở về sau chiến tranh đã bỏ phiếu loại các thành viên già ra khỏi các chức vụ của nhà trường mà họ đã giữ quá lâu. Chuyện này xảy ra trước thời của tôi.
Tới tận gần hai mươi năm trước (tức là cuối những năm 1960 - VnExpress) người ta vẫn còn nghĩ rằng proton và neutron là các hạt “cơ bản”, nhưng các thí nghiệm trong đó proton va chạm với các proton khác hoặc với các electron ở vận tốc cao đã chỉ ra rằng thực tế chúng được tạo thành từ các hạt nhỏ hơn. Các hạt này được nhà vật lý Muray Gell-Mann ở Học viện kỹ thuật California gọi là các hạt quark. Chính nhờ công trình về các hạt này mà ông đã được trao giải thưởng Nobel vào năm 1969. Nguồn gốc của cái tên này là một câu trích dẫn đầy bí ẩn từ một cuốn tiểu thuyết của nhà văn nổi tiếng James Joyce: “Ba quark cho Muster Mark”.
Có nhiều loại quark khác nhau: ít nhất có tới 6 “mùi” mà người ta gọi là u (up), d (down), s (strange), c (charmed), b (bottom), và t (top). Mỗi một mùi lại có ba “màu”: đỏ, xanh và lục. (Cần phải nhấn mạnh rằng các quark có bước sóng nhỏ hơn ánh sáng nhìn thấy rất nhiều và vì vậy không có màu theo nghĩa thông thường. Đó chỉ là vì các nhà vật lý hiện đại được tự do tưởng tượng hơn trong việc đặt tên các hạt và các hiện tượng mới, chứ không như trước bị bó hẹp trong tiếng Hy Lạp). Proton và neutron được tạo ra từ ba quark, mỗi quark một màu. Một proton chứa 2 quark u và 1 quark d, còn neutron chứa 2 quark d và 1 quark u. Chúng ta cũng có thể tạo ra các hạt từ những quark khác (s, c, b, và t), nhưng tất cả chúng đều có khối lượng lớn hơn nhiều và sẽ phân rã rất nhanh thành proton và neutron. Như vậy, hiện nay chúng ta biết rằng các nguyên tử cũng như các proton và neutron đều không phải là không phân chia được nữa. Thành thử một câu hỏi được đặt ra: các hạt thực sự là cơ bản, những viên gạch tạo nên vạn vật là gì?
Vì bước sóng của ánh sáng lớn hơn nhiều so với kích thước của nguyên tử, nên chúng ta không thể “nhìn” các thành phần của nguyên tử theo cách thông thường được. Chúng ta cần phải dùng cái gì đó có bước sóng nhỏ hơn. Như chúng ta đã thấy ở chương trước, cơ học lượng tử nói với chúng ta rằng thực tế các hạt đều là sóng và năng lượng của hạt càng cao thì bước sóng của sóng tương ứng càng nhỏ. Như vậy câu trả lời tốt nhất cho câu hỏi của chúng ta tùy thuộc vào năng lượng của hạt có thể đạt tới cao đến mức nào, bởi vì điều đó quyết định chúng ta có thể nhìn được thang chiều dài nhỏ tới mức nào. Năng lượng này của các hạt thường được đo bằng đơn vị gọi là electron-volt. (Trong các thí nghiệm của Thomson với các electron, chúng ta đã thấy rằng ông dùng điện trường để gia tốc các hạt này. Năng lượng mà một electron thu từ điện trường 1 volt chính là một electron-volt). Ở thế kỷ 19, khi những năng lượng của hạt mà con người biết cách sử dụng là năng lượng thấp chỉ cỡ mấy electron-volt được sinh ra từ các phản ứng hóa học như sự cháy chẳng hạn, người ta nghĩ rằng nguyên tử là phần tử nhỏ nhất. Trong thí nghiệm của Rutherford, năng lượng của hạt alpha cỡ hàng triệu electron-volt. Và gần đây hơn nữa, chúng ta đã biết cách dùng các trường điện từ để làm cho năng lượng của hạt lúc đầu đạt tới hàng triệu, rồi sau đó tới hàng tỉ electron-volt. Và như vậy, chúng ta biết được rằng các hạt mà 20 năm trước người ta nghĩ là “cơ bản”, thì thực tế lại được tạo thành từ các hạt nhỏ hơn nữa. Vậy thì liệu các hạt nhỏ này, đến lượt mình, có được tạo thành từ những hạt nhỏ hơn nữa không? Điều này cũng rất có thể, nhưng chúng ta có những căn cứ lý thuyết để tin rằng chúng ta có, hoặc rất gần tới có, sự hiểu biết về những viên gạch cuối cùng này của tự nhiên.
Dùng lưỡng tính sóng/hạt được thảo luận ở chương trước, vạn vật trong vũ trụ, kể cả ánh sáng và hấp dẫn đều có thể mô tả thông qua các hạt. Các hạt này có một tính chất được gọi là spin. Một cách dễ hình dung về spin là chúng ta hãy tưởng tưởng các hạt như những con quay quay xung quanh trục của chúng. Tuy điều này có thể dẫn đến những hiểu lầm, vì theo cơ học lượng tử thì các hạt không có một trục quay nào thật xác định cả. Điều mà spin của một hạt nói với chúng ta là hạt nhìn giống cái gì từ các hướng khác nhau. Một hạt có spin 0 giống như một chấm tròn: nó nhìn từ mọi hướng đều giống hệt nhau. (Hình 5.1a). Trái lại, hạt có spin 1 lại giống như một mũi tên: nhìn từ các hướng khác nhau sẽ thấy nó khác nhau (Hình 5.1b). Hình 5.1 a, b, c: Hình minh họa về các dạng spin khác nhau của hạt. Chỉ nếu người ta quay nó trọn một vòng (360 độ) thì hạt mới nhìn giống như trước. Hạt có spin 2 giống như một mũi tên có hai đầu (Hình 5.1c): nó nhìn giống như trước nếu quay một nửa vòng (180 độ). Tương tự, các hạt có spin cao hơn sẽ nhìn giống như trước nếu quay nó một phần nhỏ hơn của một vòng trọn vẹn. Toàn bộ điều này xem ra có vẻ khá đơn giản, nhưng một điều đáng chú ý là có những hạt nhìn lại không giống như trước dù có quay nó trọn một vòng, muốn nhìn nó giống như trước phải quay trọn đúng hai vòng. Những hạt như vậy người ta nói là nó có spin 1/2.
Tất cả những hạt trong vũ trụ mà chúng ta biết được chia làm hai nhóm: các hạt có spin 1/2 tạo nên vật chất trong vũ trụ và các hạt có spin 0, 1, 2, như chúng ta sẽ thấy, là những hạt gây ra các lực giữa các hạt vật chất. Các hạt vật chất tuân theo cái được gọi là nguyên lý loại trừ Pauli. Điều này được phát hiện vào năm 1925 bởi nhà vật lý người Áo Wolfgang Pauli, và vì thế ông đã được trao giải thưởng Nobel vào năm 1945. Ông là một nhà vật lý lý thuyết điển hình: người ta nói rằng thậm chí sự có mặt của ông ở một thành phố nào đó cũng làm cho mọi thì nghiệm ở đó sai lạc hết! Nguyên lý loại trừ Pauli phát biểu rằng hai hạt đồng nhất không thể tồn tại trong cùng một trạng thái, tức là chúng không thể vừa có cùng vị trí vừa có cùng vận tốc, trong giới hạn được quy định bởi nguyên lý bất định. Nguyên lý loại trừ Pauli là cực kỳ quan trọng vì nó cho phép giải thích tại sao các hạt vật chất không co về trạng thái có mật độ rất cao dưới ảnh hưởng của các lực tạo bởi những hạt có spin 0, 1 và 2: nếu các hạt vật chất có vị trí rất gần nhau, thì chúng lại phải có vận tốc khác nhau mà điều này có nghĩa là chúng không dừng lâu ở một vị trí. Nếu thế giới được tạo ra không có nguyên lý loại trừ, thì các quark sẽ không tạo nên các hạt proton và neutron tách biệt và hoàn toàn xác định. Và cùng với các electron chúng cũng sẽ không tạo nên các nguyên tử tách biệt và hoàn toàn xác định. Khi đó tất cả chúng sẽ suy sập tạo nên một món “súp” đặc và tương đối đồng đều.
Sự hiểu biết đúng đắn về electron và các hạt có spin 1/2 khác chỉ có vào năm 1928 khi Paul Dirac đưa ra một lý thuyết mới. Sau này Dirac đã được bầu làm giáo sư toán học ở Cambridge (cương vị trước kia của Newton và của tôi hiện nay). Lý thuyết của Dirac là lý thuyết đầu tiên hòa hợp được cả với cơ học lượng tử và thuyết tương đối hẹp.
Nó giải thích được bằng toán học tại sao electron lại có spin 1/2, tức là tại sao nó nhìn không giống như trước nếu chúng ta quay nó trọn một vòng; và nhìn giống như trước nếu chúng ta quay nó trọn hai vòng. Lý thuyết của Dirac còn tiên đoán rằng electron có một phản hạt của nó: đó là anti-electron hay còn gọi là positron. Việc phát hiện được hạt positron vào năm 1932 đã khẳng định lý thuyết của Dirac và dẫn tới việc ông được trao giải thưởng Nobel về vật lý vào năm 1933. Bây giờ thì chúng ta đều biết rằng mỗi một hạt đều có một phản hạt và hạt với phản hạt của nó có thể hủy nhau. (Trong trường hợp các hạt mang lực thì phản hạt giống hệt như chính hạt đó). Như vậy có thể có cả các phản thế giới, phản nhân loại được tạo thành từ các phản hạt. Tuy nhiên, nếu bạn gặp phản của chính bạn thì chớ có bắt tay đấy! Vì cả hai sẽ biến mất trong chớp mắt. Vấn đề tại sao xung quanh chúng ta số hạt lại nhiều hơn các phản hạt rất nhiều là một vấn đề quan trọng, và tôi sẽ trở lại vấn đề này ở cuối chương.
Trong cơ học lượng tử, người ta cho rằng các lực hoặc tương tác giữa các hạt vật chất được truyền bởi các hạt có spin nguyên 0, 1 hoặc 2. Điều này xảy ra như sau: Một hạt vật chất, ví dụ một electron hoặc một hạt quark, phát ra một hạt truyền tương tác. Sự giật lùi do việc phát này luôn làm thay đổi vận tốc của hạt vật chất đó. Sau đó, hạt truyền va chạm với một hạt vật chất khác và bị hạt này hấp thụ. Kết quả vận tốc của hạt thứ hai cũng bị thay đổi hệt như có một lực tác dụng giữa hai hạt vật chất đó.
Một tính chất quan trọng của các hạt truyền tương tác là chúng không tuân theo nguyên lý loại trừ. Điều này có nghĩa là có một số không hạn chế các hạt như vậy được trao đổi giữa các hạt và vì vậy có thể làm cho lực trở nên rất mạnh. Tuy nhiên, nếu các hạt truyền tương tác có khối lượng lớn, thì chúng sẽ khó được tạo ra và khó trao đổi trên khoảng cách lớn. Vì vậy, lực do các hạt đó mang sẽ có tầm tác dụng ngắn. Ngược lại, nếu các hạt truyền tương tác không có khối lượng thì lực có tầm tác dụng dài. Các hạt truyền tương tác giữa những hạt vật chất được gọi là các hạt ảo, bởi vì không giống như các hạt “thực”, chúng không thể được phát hiện trực tiếp bằng một máy dò hạt nào. Tuy nhiên, chúng ta biết chúng tồn tại, vì chúng gây ra hiệu ứng có thể đo được: đó là lực giữa các hạt vật chất. Các hạt có spin 0, 1 hoặc 2 trong một số trường hợp có thể tồn tại như những hạt thực khi chúng có thể được phát hiện trực tiếp. Khi đó đối với chúng ta chúng giống như cái mà các nhà vật lý cổ điển gọi là các sóng như sóng ánh sáng hoặc sóng hấp dẫn. Các sóng này đôi khi có thể được phát ra khi các hạt vật chất tương tác với nhau bằng cách trao đổi hạt lực ảo. (Ví dụ, lực đẩy tĩnh điện giữa hai electron là do sự trao đổi các photon ảo mà ta không bao giờ phát hiện được trực tiếp; nhưng nếu một electron chuyển động qua một electron khác thì các photon thực có thể được phát ra và chúng ta phát hiện được chúng như các sóng ánh sáng). Các hạt truyền tương tác có thể nhóm lại thành bốn loại tùy theo cường độ của lực mà chúng mang và các hạt vật chất mà chúng tương tác. Cần nhấn mạnh rằng sự phân chia thành bốn loại này có tính chất nhân tạo, nó chỉ thuận tiện cho việc xây dựng các lý thuyết riêng phần mà thôi, chứ không tương ứng với một điều gì sâu sắc hơn. Xét đến cùng, phần đông các nhà vật lý đều hy vọng tìm được một lý thuyết thống nhất có khả năng giải thích bốn loại lực nói trên chỉ là những mặt khác nhau của một lực duy nhất. Thực tế, nhiều người còn nói rằng đó là mục tiêu hàng đầu của vật lý học ngày nay. Mới đây, người ta đã thành công trong việc thống nhất được 3 trong số 4 loại lực trên và tôi sẽ đề cập đến vấn đề này ở cuối chương. Vấn đề thống nhất nốt lực còn lại là hấp dẫn ta sẽ đề cập đến sau. Loại lực đầu tiên là lực hấp dẫn. Lực này có tính chất phổ quát, tức là mọi hạt đều cảm thấy nó tùy theo khối lượng hoặc năng lượng của hạt. Trong số bốn lực, thì lực hấp dẫn là yếu nhất, yếu tới mức chúng ta sẽ không thể nhận thấy nó, nếu nó không có hai tính chất đặc biệt sau: nó có thể tác dụng trên khoảng cách lớn và luôn luôn là lực hút. Điều này có nghĩa là những lực hấp dẫn rất yếu giữa các hạt cá thể thuộc hai vật thể lớn, chẳng hạn như trái đất và mặt trời, có thể được cộng gộp lại để tạo nên một lực lớn. Ba loại lực còn lại, hoặc có tầm tác dụng ngắn, hoặc đôi khi là lực hút và đôi khi lại là lực đẩy, vì vậy chúng có xu hướng triệt tiêu nhau. Theo cách nhìn nhận của cơ học lượng tử đối với lực hấp dẫn, thì lực giữa hai hạt vật chất được mang bởi một hạt có spin 2, gọi là hạt graviton. Hạt này không có khối lượng riêng và vì vậy có tầm tác dụng dài. Lực hấp dẫn giữa trái đất và mặt trời chính là do sự trao đổi các graviton giữa các hạt tạo nên hai vật thể đó. Mặc dù các hạt được trao đổi là ảo, nhưng điều chắc chắn là chúng tạo ra một hiệu ứng đo được - đó là làm cho trái đất quay xung quanh mặt trời. Các graviton tạo nên cái mà các nhà vật lý cổ điển gọi là các sóng hấp dẫn, chúng rất yếu và khó phát hiện tới mức cho đến nay vẫn chưa quan sát được.
Loại lực tiếp sau là lực điện từ. Đây là lực tương tác giữa các hạt mang điện như các electron và các quark, chứ không phải giữa các hạt không mang điện như graviton. Lực này lớn hơn lực hấp dẫn nhiều: lực điện từ giữa hai electron khoảng triệu triệu triệu triệu triệu triệu triệu (1 với bốn mươi hai số 0 tiếp sau) lần lớn hơn lực hấp dẫn giữa chúng. Tuy nhiên, có hai loại điện tích, điện tích âm và điện tích dương. Lực giữa hai điện tích dương cũng như hai điện tích âm đều là lực đẩy, trong khi lực giữa một điện tích dương và một điện tích âm lại là lực hút. Một vật thể lớn như trái đất hoặc mặt trời chứa các điện tích dương và âm với số lượng gần như nhau. Vì vậy lực hút và lực đẩy của các hạt cá thể gần như triệt tiêu nhau và lực điện từ tổng cộng còn lại rất nhỏ. Tuy nhiên, ở quy mô nhỏ như các nguyên tử và phân tử lực điện từ lại chiếm ưu thế. Lực hút điện từ giữa các electron mang điện âm và các proton mang điện dương trong hạt nhân làm cho các electron quay xung quanh hạt nhân của nguyên tử, hệt như lực hấp dẫn làm cho trái đất quay xung quanh mặt trời. Lực điện từ được hình dung như được gây bởi sự trao đổi một số lớn các hạt ảo không khối lượng, có spin 1 gọi là các photon. Các photon được trao đổi là các hạt ảo. Tuy nhiên, khi electron chuyển từ một quỹ đạo được phép này sang một quỹ đạo được phép khác gần hạt nhân hơn, năng lượng sẽ được giải phóng và một photon thực được phát ra - photon này có thể quan sát được bằng mắt người nếu nó có bước sóng ứng với ánh sáng nhìn thấy hoặc bởi một màng như phim ảnh, chẳng hạn. Cũng như vậy, nếu một photon thực va chạm với một nguyên tử nó có thể làm cho một electron chuyển từ quỹ đạo gần hạt nhân hơn sang quỹ đạo xa hơn. Quá trình này đã sử dụng hết năng lượng của photon, vì vậy nó đã bị hấp thụ.
Loại lực thứ ba được gọi là lực hạt nhân yếu. Nó gây ra sự phóng xạ và chỉ tác dụng lên các hạt có spin 1/2 chứ không tác dụng lên các hạt có spin 0, 1 hoặc 2 như photon và graviton. Lực hạt nhân yếu chỉ được hiểu thấu đáo từ năm 1967, khi Abdus Salam ở trường Imperal College, London và Steven Weinberg ở Đại học Harvard đưa ra các lý thuyết thống nhất tương tác này với tương tác điện từ, hệt như Maxwell đã thống nhất lực điện với lực từ khoảng 100 năm trước. Họ đưa ra giả thuyết cho rằng, ngoài photon, còn có ba hạt spin 1 khác gọi là các hạt boson mang lực yếu. Đó là các hạt W+, Wvà Zo, mỗi hạt có khối lượng khoảng 100 GeV (GeV là giga electron-volt, bằng một tỷ electron-volt). Lý thuyết Weinberg - Salam đã đưa ra một tính chất gọi là sự phá vỡ đối xứng tự phát. Điều này có nghĩa là một số hạt tưởng như là hoàn toàn khác nhau ở năng lượng thấp thực tế lại là cùng một loại hạt, chỉ có điều ở trạng thái khác nhau mà thôi. Ở mức năng lượng cao, tất cả các hạt này phản ứng hoàn toàn tương tự nhau. Hiệu ứng này khá giống với hành trạng của quả cầu trong trò quay xổ số. Ở mức năng lượng cao (tức khi bánh xe quay nhanh), quả cầu về căn bản phản ứng theo một cách, đó là quay tròn, quay tròn. Nhưng khi bánh xe quay chậm lại, năng lượng của quả cầu giảm và cuối cùng quả cầu sẽ rơi vào một trong số 36 rãnh trong bánh xe. Nói một cách khác, ở mức năng lượng thấp, quả cầu có thể tồn tại trong 36 trạng thái khác nhau. Nếu vì một nguyên nhân nào đó, chúng ta chỉ có thể quan sát được quả cầu ở mức năng lượng thấp, ta có thể nghĩ rằng có 36 loại quả cầu khác nhau. Trong lý thuyết Weinberg - Salam, ở những mức năng lượng lớn hơn 100 GeV nhiều, ba hạt mới và photon phản ứng một cách hoàn toàn tương tự nhau. Ở những mức năng lượng thấp hơn, điều mà ta hay gặp trong những tình huống bình thường, thì sự đối xứng này giữa các hạt sẽ bị phá vỡ. W+, W- và Zo khi đó sẽ có khối lượng lớn, và làm cho các lực mà chúng mang có tầm tác dụng ngắn. Vào thời Salam và Weinberg đưa ra lý thuyết của mình, còn ít người tin họ và các máy gia tốc hạt còn chưa đủ mạnh để đạt tới năng lượng 100 GeV - năng lượng cần phải có để tạo ra các hạt W+, W- và Zo thực. Tuy nhiên, khoảng gần mười năm sau, những tiên đoán khác của lý thuyết đó ở năng lượng thấp phù hợp rất tốt với thực nghiệm, khiến cho vào năm 1979 Salam và Weinberg đã được trao giải thưởng Nobel về vật lý cùng với Sheldon Glashow, một nhà vật lý cũng ở Đại học Harvard và cũng đưa ra một lý thuyết tương tự thống nhất lực điện từ và lực hạt nhân yếu. Ủy ban trao giải Nobel đã hoàn toàn yên tâm, không sợ mắc sai lầm khi mà vào năm 1983 tại CERN (Trung tâm nghiên cứu hạt nhân châu u) người ta đã phát hiện được ba hạt W+, W- và Zo với khối lượng và các tính chất khác đúng như lý thuyết đã tiên đoán. Carlo Rubbia, người lạnh đạo một nhóm nghiên cứu gồm khoảng vài trăm nhà vật lý - tác giả của phát minh đó - đã được trao giải thưởng Nobel vào năm 1984 cùng với Simon Van der Meer, một kỹ sư ở CERN, người đã phát triển một hệ thống tích lũy phản vật chất được sử dụng trong phát minh trên. (Thật khó đặt một dấu ấn trong vật lý thực nghiệm những ngày này nếu bạn không ở đỉnh cao!).
Loại lực thứ tư là lực hạt nhân mạnh. Đây là lực giữ cho các hạt quark ở trong proton và neutron ở trong hạt nhân nguyên tử. Người ta tin rằng lực này được mang bởi một hạt có spin 1 khác gọi là gluon. Hạt gluon chỉ tương tác với chính nó và với các quark. Lực hạt nhân mạnh có một tính chất rất lạ gọi là "sự cầm tù": nó luôn luôn liên kết các hạt này lại thành những tổ hợp không có mầu.
Như vậy ta không thể có một hạt quark riêng rẽ tự nó vì nó sẽ có màu (đỏ, xanh hoặc lục). Thay vì thế, một quark đỏ cần phải liên kết với một quark xanh và một quark lục bằng một “dây” các gluon (đỏ + xanh + lục = trắng).
Một tam tuyến như thế tạo nên một proton hoặc một neutron. Một khả năng khác là cặp tạo bởi một quark và một phản-quark (đỏ + phản-đỏ, hoặc xanh + phản-xanh, hoặc lục + phản-lục = trắng). Các tổ hợp như vậy tạo nên các hạt đã biết như các meson là những hạt không bền, vì quark và phản-quark có thể hủy nhau tạo thành các electron và các hạt khác. Tương tự, sự cầm tù cũng không cho phép có một gluon riêng lẻ tự nó, vì các gluon cũng có màu. Thay vì thế, người ta cần phải có một tập hợp các gluon với tổng màu là trắng. Một tập hợp như thế tạo nên một hạt không bền gọi là glueball.
Các hạt cơ bản và các lực trong tự nhiên
Aristotle tin rằng toàn bộ vật chất trong vũ trụ được tạo thành từ bốn yếu tố cơ bản: đất, không khí, nước và lửa. Các yếu tố này được tác động bởi hai lực: lực hấp dẫn có xu hướng làm chìm xuống đối với đất và nước và lực nâng có xu hướng làm nâng lên đối với không khí và lửa. Sự phân chia nội dung của vũ trụ thành vật chất và các lực như thế vẫn còn được dùng cho đến ngày nay.
Aristotle cũng tin rằng vật chất là liên tục, tức là người ta có thể phân chia một mẩu vật chất ngày càng nhỏ mà không có một giới hạn nào: người ta không bao giờ đi tới một hạt vật chất mà không thể phân chia được nữa. Tuy nhiên một số ít người Hy Lạp, chẳng hạn như Democritus, lại cho rằng vật chất vốn có dạng hạt và vạn vật được tạo thành từ một số lớn các loại nguyên tử (atom) khác nhau (atom theo tiếng Hy Lạp có nghĩa là “không thể phân chia được nữa”). Cuộc tranh cãi kéo dài hàng thế kỷ mà không bên nào có một bằng chứng thực tế nào. Mãi tới năm 1830, John Dalton - nhà vật lý và hóa học người Anh - đã chỉ ra rằng việc các hợp chất hóa học luôn luôn được hóa hợp theo những tỷ lệ nhất định có thể được giải thích là do các nguyên tử đã cụm lại với nhau tạo nên những đơn nguyên gọi là phân tử. Tuy nhiên, cho tới tận những năm đầu thế kỷ này, cuộc tranh luận giữa hai trường phái tư tưởng mới ngã ngũ với phần thắng thuộc về những người theo nguyên tử luận. Einstein là người đã đưa ra được một bằng chứng vật lý quan trọng. Trong một bài báo viết năm 1905, chỉ ít tuần trước bài báo nổi tiếng về thuyết tương đối hẹp, Einstein đã chỉ ra rằng cái được gọi là chuyển động Brown - tức là chuyển động không đều đặn, ngẫu nhiên của các hạt bụi lơ lửng trong một chất lỏng - có thể được giải thích như là kết quả của sự va chạm của các nguyên tử chất lỏng với các hạt bụi. Vào thời gian đó cũng đã có những nghi ngờ đối với giả thuyết cho rằng các nguyên tử là không thể phân chia được. Vài năm trước đó, một nghiên cứu sinh của trường Trinity College, Cambridge, là J.J. Thomson đã chứng minh được sự tồn tại của một hạt vật chất mà ông gọi là electron. Đó là một hạt có khối lượng nhỏ hơn khối lượng của nguyên tử nhẹ nhất khoảng một ngàn lần. Ông đã dùng một dụng cụ khá giống với chiếc đèn hình của một máy thu hình hiện đại: một sợi kim loại nóng đỏ phát ra các hạt electron và bởi vì các hạt này mang điện âm nên có thể dùng một điện trường để gia tốc của chúng hướng tới một màn phủ photpho. Khi các hạt này đập vào màn, chúng sẽ gây ra những chớp sáng. Chẳng bao lâu sau, người ta thấy rằng các hạt electron đó bắn ra từ chính bên trong các nguyên tử và vào năm 1911, nhà vật lý người Anh Ernest Rutherford cuối cùng đã chứng tỏ được rằng các nguyên tử vật chất có cấu trúc bên trong: chúng tạo bởi một hạt nhân cực kỳ nhỏ mang điện dương và các electron quay quanh hạt nhân đó. Ông rút ra điều này từ việc phân tích sự lệch hướng của các hạt alpha - hạt mang điện dương do các nguyên tử phóng xạ phát ra - khi va chạm với các nguyên tử Thoạt đầu người ta nghĩ rằng hạt nhân nguyên tử được tạo bởi electron và một số hạt mang điện dương gọi là proton (theo tiếng Hy Lạp proton có nghĩa là “đầu tiên”, vì người ta nghĩ rằng nó là đơn nguyên cơ bản tạo nên vật chất). Tuy nhiên, vào năm 1932 một đồng nghiệp của Rutherford ở Cambridge là James Chadwick đã phát hiện ra rằng hạt nhân còn chứa một hạt khác gọi là neutron. Đó là hạt có khối lượng gần như proton nhưng không mang điện. Chadwick đã được trao giải thưởng Nobel vì phát minh này và được bầu làm hiệu trưởng của trường Gonville và Caius College, Cambridge (trường mà hiện tôi là thành viên của ban giám hiệu). Sau này ông đã phải từ chức hiệu trưởng vì bất đồng với các thành viên trong ban giám hiệu. Sự bất đồng trong trường còn gay gắt hơn khi nhóm các thành viên lãnh đạo trẻ trở về sau chiến tranh đã bỏ phiếu loại các thành viên già ra khỏi các chức vụ của nhà trường mà họ đã giữ quá lâu. Chuyện này xảy ra trước thời của tôi.
Tới tận gần hai mươi năm trước (tức là cuối những năm 1960 - VnExpress) người ta vẫn còn nghĩ rằng proton và neutron là các hạt “cơ bản”, nhưng các thí nghiệm trong đó proton va chạm với các proton khác hoặc với các electron ở vận tốc cao đã chỉ ra rằng thực tế chúng được tạo thành từ các hạt nhỏ hơn. Các hạt này được nhà vật lý Muray Gell-Mann ở Học viện kỹ thuật California gọi là các hạt quark. Chính nhờ công trình về các hạt này mà ông đã được trao giải thưởng Nobel vào năm 1969. Nguồn gốc của cái tên này là một câu trích dẫn đầy bí ẩn từ một cuốn tiểu thuyết của nhà văn nổi tiếng James Joyce: “Ba quark cho Muster Mark”.
Có nhiều loại quark khác nhau: ít nhất có tới 6 “mùi” mà người ta gọi là u (up), d (down), s (strange), c (charmed), b (bottom), và t (top). Mỗi một mùi lại có ba “màu”: đỏ, xanh và lục. (Cần phải nhấn mạnh rằng các quark có bước sóng nhỏ hơn ánh sáng nhìn thấy rất nhiều và vì vậy không có màu theo nghĩa thông thường. Đó chỉ là vì các nhà vật lý hiện đại được tự do tưởng tượng hơn trong việc đặt tên các hạt và các hiện tượng mới, chứ không như trước bị bó hẹp trong tiếng Hy Lạp). Proton và neutron được tạo ra từ ba quark, mỗi quark một màu. Một proton chứa 2 quark u và 1 quark d, còn neutron chứa 2 quark d và 1 quark u. Chúng ta cũng có thể tạo ra các hạt từ những quark khác (s, c, b, và t), nhưng tất cả chúng đều có khối lượng lớn hơn nhiều và sẽ phân rã rất nhanh thành proton và neutron. Như vậy, hiện nay chúng ta biết rằng các nguyên tử cũng như các proton và neutron đều không phải là không phân chia được nữa. Thành thử một câu hỏi được đặt ra: các hạt thực sự là cơ bản, những viên gạch tạo nên vạn vật là gì?
Vì bước sóng của ánh sáng lớn hơn nhiều so với kích thước của nguyên tử, nên chúng ta không thể “nhìn” các thành phần của nguyên tử theo cách thông thường được. Chúng ta cần phải dùng cái gì đó có bước sóng nhỏ hơn. Như chúng ta đã thấy ở chương trước, cơ học lượng tử nói với chúng ta rằng thực tế các hạt đều là sóng và năng lượng của hạt càng cao thì bước sóng của sóng tương ứng càng nhỏ. Như vậy câu trả lời tốt nhất cho câu hỏi của chúng ta tùy thuộc vào năng lượng của hạt có thể đạt tới cao đến mức nào, bởi vì điều đó quyết định chúng ta có thể nhìn được thang chiều dài nhỏ tới mức nào. Năng lượng này của các hạt thường được đo bằng đơn vị gọi là electron-volt. (Trong các thí nghiệm của Thomson với các electron, chúng ta đã thấy rằng ông dùng điện trường để gia tốc các hạt này. Năng lượng mà một electron thu từ điện trường 1 volt chính là một electron-volt). Ở thế kỷ 19, khi những năng lượng của hạt mà con người biết cách sử dụng là năng lượng thấp chỉ cỡ mấy electron-volt được sinh ra từ các phản ứng hóa học như sự cháy chẳng hạn, người ta nghĩ rằng nguyên tử là phần tử nhỏ nhất. Trong thí nghiệm của Rutherford, năng lượng của hạt alpha cỡ hàng triệu electron-volt. Và gần đây hơn nữa, chúng ta đã biết cách dùng các trường điện từ để làm cho năng lượng của hạt lúc đầu đạt tới hàng triệu, rồi sau đó tới hàng tỉ electron-volt. Và như vậy, chúng ta biết được rằng các hạt mà 20 năm trước người ta nghĩ là “cơ bản”, thì thực tế lại được tạo thành từ các hạt nhỏ hơn nữa. Vậy thì liệu các hạt nhỏ này, đến lượt mình, có được tạo thành từ những hạt nhỏ hơn nữa không? Điều này cũng rất có thể, nhưng chúng ta có những căn cứ lý thuyết để tin rằng chúng ta có, hoặc rất gần tới có, sự hiểu biết về những viên gạch cuối cùng này của tự nhiên.
Dùng lưỡng tính sóng/hạt được thảo luận ở chương trước, vạn vật trong vũ trụ, kể cả ánh sáng và hấp dẫn đều có thể mô tả thông qua các hạt. Các hạt này có một tính chất được gọi là spin. Một cách dễ hình dung về spin là chúng ta hãy tưởng tưởng các hạt như những con quay quay xung quanh trục của chúng. Tuy điều này có thể dẫn đến những hiểu lầm, vì theo cơ học lượng tử thì các hạt không có một trục quay nào thật xác định cả. Điều mà spin của một hạt nói với chúng ta là hạt nhìn giống cái gì từ các hướng khác nhau. Một hạt có spin 0 giống như một chấm tròn: nó nhìn từ mọi hướng đều giống hệt nhau. (Hình 5.1a). Trái lại, hạt có spin 1 lại giống như một mũi tên: nhìn từ các hướng khác nhau sẽ thấy nó khác nhau (Hình 5.1b). Hình 5.1 a, b, c: Hình minh họa về các dạng spin khác nhau của hạt. Chỉ nếu người ta quay nó trọn một vòng (360 độ) thì hạt mới nhìn giống như trước. Hạt có spin 2 giống như một mũi tên có hai đầu (Hình 5.1c): nó nhìn giống như trước nếu quay một nửa vòng (180 độ). Tương tự, các hạt có spin cao hơn sẽ nhìn giống như trước nếu quay nó một phần nhỏ hơn của một vòng trọn vẹn. Toàn bộ điều này xem ra có vẻ khá đơn giản, nhưng một điều đáng chú ý là có những hạt nhìn lại không giống như trước dù có quay nó trọn một vòng, muốn nhìn nó giống như trước phải quay trọn đúng hai vòng. Những hạt như vậy người ta nói là nó có spin 1/2.
Tất cả những hạt trong vũ trụ mà chúng ta biết được chia làm hai nhóm: các hạt có spin 1/2 tạo nên vật chất trong vũ trụ và các hạt có spin 0, 1, 2, như chúng ta sẽ thấy, là những hạt gây ra các lực giữa các hạt vật chất. Các hạt vật chất tuân theo cái được gọi là nguyên lý loại trừ Pauli. Điều này được phát hiện vào năm 1925 bởi nhà vật lý người Áo Wolfgang Pauli, và vì thế ông đã được trao giải thưởng Nobel vào năm 1945. Ông là một nhà vật lý lý thuyết điển hình: người ta nói rằng thậm chí sự có mặt của ông ở một thành phố nào đó cũng làm cho mọi thì nghiệm ở đó sai lạc hết! Nguyên lý loại trừ Pauli phát biểu rằng hai hạt đồng nhất không thể tồn tại trong cùng một trạng thái, tức là chúng không thể vừa có cùng vị trí vừa có cùng vận tốc, trong giới hạn được quy định bởi nguyên lý bất định. Nguyên lý loại trừ Pauli là cực kỳ quan trọng vì nó cho phép giải thích tại sao các hạt vật chất không co về trạng thái có mật độ rất cao dưới ảnh hưởng của các lực tạo bởi những hạt có spin 0, 1 và 2: nếu các hạt vật chất có vị trí rất gần nhau, thì chúng lại phải có vận tốc khác nhau mà điều này có nghĩa là chúng không dừng lâu ở một vị trí. Nếu thế giới được tạo ra không có nguyên lý loại trừ, thì các quark sẽ không tạo nên các hạt proton và neutron tách biệt và hoàn toàn xác định. Và cùng với các electron chúng cũng sẽ không tạo nên các nguyên tử tách biệt và hoàn toàn xác định. Khi đó tất cả chúng sẽ suy sập tạo nên một món “súp” đặc và tương đối đồng đều.
Sự hiểu biết đúng đắn về electron và các hạt có spin 1/2 khác chỉ có vào năm 1928 khi Paul Dirac đưa ra một lý thuyết mới. Sau này Dirac đã được bầu làm giáo sư toán học ở Cambridge (cương vị trước kia của Newton và của tôi hiện nay). Lý thuyết của Dirac là lý thuyết đầu tiên hòa hợp được cả với cơ học lượng tử và thuyết tương đối hẹp.
Nó giải thích được bằng toán học tại sao electron lại có spin 1/2, tức là tại sao nó nhìn không giống như trước nếu chúng ta quay nó trọn một vòng; và nhìn giống như trước nếu chúng ta quay nó trọn hai vòng. Lý thuyết của Dirac còn tiên đoán rằng electron có một phản hạt của nó: đó là anti-electron hay còn gọi là positron. Việc phát hiện được hạt positron vào năm 1932 đã khẳng định lý thuyết của Dirac và dẫn tới việc ông được trao giải thưởng Nobel về vật lý vào năm 1933. Bây giờ thì chúng ta đều biết rằng mỗi một hạt đều có một phản hạt và hạt với phản hạt của nó có thể hủy nhau. (Trong trường hợp các hạt mang lực thì phản hạt giống hệt như chính hạt đó). Như vậy có thể có cả các phản thế giới, phản nhân loại được tạo thành từ các phản hạt. Tuy nhiên, nếu bạn gặp phản của chính bạn thì chớ có bắt tay đấy! Vì cả hai sẽ biến mất trong chớp mắt. Vấn đề tại sao xung quanh chúng ta số hạt lại nhiều hơn các phản hạt rất nhiều là một vấn đề quan trọng, và tôi sẽ trở lại vấn đề này ở cuối chương.
Trong cơ học lượng tử, người ta cho rằng các lực hoặc tương tác giữa các hạt vật chất được truyền bởi các hạt có spin nguyên 0, 1 hoặc 2. Điều này xảy ra như sau: Một hạt vật chất, ví dụ một electron hoặc một hạt quark, phát ra một hạt truyền tương tác. Sự giật lùi do việc phát này luôn làm thay đổi vận tốc của hạt vật chất đó. Sau đó, hạt truyền va chạm với một hạt vật chất khác và bị hạt này hấp thụ. Kết quả vận tốc của hạt thứ hai cũng bị thay đổi hệt như có một lực tác dụng giữa hai hạt vật chất đó.
Một tính chất quan trọng của các hạt truyền tương tác là chúng không tuân theo nguyên lý loại trừ. Điều này có nghĩa là có một số không hạn chế các hạt như vậy được trao đổi giữa các hạt và vì vậy có thể làm cho lực trở nên rất mạnh. Tuy nhiên, nếu các hạt truyền tương tác có khối lượng lớn, thì chúng sẽ khó được tạo ra và khó trao đổi trên khoảng cách lớn. Vì vậy, lực do các hạt đó mang sẽ có tầm tác dụng ngắn. Ngược lại, nếu các hạt truyền tương tác không có khối lượng thì lực có tầm tác dụng dài. Các hạt truyền tương tác giữa những hạt vật chất được gọi là các hạt ảo, bởi vì không giống như các hạt “thực”, chúng không thể được phát hiện trực tiếp bằng một máy dò hạt nào. Tuy nhiên, chúng ta biết chúng tồn tại, vì chúng gây ra hiệu ứng có thể đo được: đó là lực giữa các hạt vật chất. Các hạt có spin 0, 1 hoặc 2 trong một số trường hợp có thể tồn tại như những hạt thực khi chúng có thể được phát hiện trực tiếp. Khi đó đối với chúng ta chúng giống như cái mà các nhà vật lý cổ điển gọi là các sóng như sóng ánh sáng hoặc sóng hấp dẫn. Các sóng này đôi khi có thể được phát ra khi các hạt vật chất tương tác với nhau bằng cách trao đổi hạt lực ảo. (Ví dụ, lực đẩy tĩnh điện giữa hai electron là do sự trao đổi các photon ảo mà ta không bao giờ phát hiện được trực tiếp; nhưng nếu một electron chuyển động qua một electron khác thì các photon thực có thể được phát ra và chúng ta phát hiện được chúng như các sóng ánh sáng). Các hạt truyền tương tác có thể nhóm lại thành bốn loại tùy theo cường độ của lực mà chúng mang và các hạt vật chất mà chúng tương tác. Cần nhấn mạnh rằng sự phân chia thành bốn loại này có tính chất nhân tạo, nó chỉ thuận tiện cho việc xây dựng các lý thuyết riêng phần mà thôi, chứ không tương ứng với một điều gì sâu sắc hơn. Xét đến cùng, phần đông các nhà vật lý đều hy vọng tìm được một lý thuyết thống nhất có khả năng giải thích bốn loại lực nói trên chỉ là những mặt khác nhau của một lực duy nhất. Thực tế, nhiều người còn nói rằng đó là mục tiêu hàng đầu của vật lý học ngày nay. Mới đây, người ta đã thành công trong việc thống nhất được 3 trong số 4 loại lực trên và tôi sẽ đề cập đến vấn đề này ở cuối chương. Vấn đề thống nhất nốt lực còn lại là hấp dẫn ta sẽ đề cập đến sau. Loại lực đầu tiên là lực hấp dẫn. Lực này có tính chất phổ quát, tức là mọi hạt đều cảm thấy nó tùy theo khối lượng hoặc năng lượng của hạt. Trong số bốn lực, thì lực hấp dẫn là yếu nhất, yếu tới mức chúng ta sẽ không thể nhận thấy nó, nếu nó không có hai tính chất đặc biệt sau: nó có thể tác dụng trên khoảng cách lớn và luôn luôn là lực hút. Điều này có nghĩa là những lực hấp dẫn rất yếu giữa các hạt cá thể thuộc hai vật thể lớn, chẳng hạn như trái đất và mặt trời, có thể được cộng gộp lại để tạo nên một lực lớn. Ba loại lực còn lại, hoặc có tầm tác dụng ngắn, hoặc đôi khi là lực hút và đôi khi lại là lực đẩy, vì vậy chúng có xu hướng triệt tiêu nhau. Theo cách nhìn nhận của cơ học lượng tử đối với lực hấp dẫn, thì lực giữa hai hạt vật chất được mang bởi một hạt có spin 2, gọi là hạt graviton. Hạt này không có khối lượng riêng và vì vậy có tầm tác dụng dài. Lực hấp dẫn giữa trái đất và mặt trời chính là do sự trao đổi các graviton giữa các hạt tạo nên hai vật thể đó. Mặc dù các hạt được trao đổi là ảo, nhưng điều chắc chắn là chúng tạo ra một hiệu ứng đo được - đó là làm cho trái đất quay xung quanh mặt trời. Các graviton tạo nên cái mà các nhà vật lý cổ điển gọi là các sóng hấp dẫn, chúng rất yếu và khó phát hiện tới mức cho đến nay vẫn chưa quan sát được.
Loại lực tiếp sau là lực điện từ. Đây là lực tương tác giữa các hạt mang điện như các electron và các quark, chứ không phải giữa các hạt không mang điện như graviton. Lực này lớn hơn lực hấp dẫn nhiều: lực điện từ giữa hai electron khoảng triệu triệu triệu triệu triệu triệu triệu (1 với bốn mươi hai số 0 tiếp sau) lần lớn hơn lực hấp dẫn giữa chúng. Tuy nhiên, có hai loại điện tích, điện tích âm và điện tích dương. Lực giữa hai điện tích dương cũng như hai điện tích âm đều là lực đẩy, trong khi lực giữa một điện tích dương và một điện tích âm lại là lực hút. Một vật thể lớn như trái đất hoặc mặt trời chứa các điện tích dương và âm với số lượng gần như nhau. Vì vậy lực hút và lực đẩy của các hạt cá thể gần như triệt tiêu nhau và lực điện từ tổng cộng còn lại rất nhỏ. Tuy nhiên, ở quy mô nhỏ như các nguyên tử và phân tử lực điện từ lại chiếm ưu thế. Lực hút điện từ giữa các electron mang điện âm và các proton mang điện dương trong hạt nhân làm cho các electron quay xung quanh hạt nhân của nguyên tử, hệt như lực hấp dẫn làm cho trái đất quay xung quanh mặt trời. Lực điện từ được hình dung như được gây bởi sự trao đổi một số lớn các hạt ảo không khối lượng, có spin 1 gọi là các photon. Các photon được trao đổi là các hạt ảo. Tuy nhiên, khi electron chuyển từ một quỹ đạo được phép này sang một quỹ đạo được phép khác gần hạt nhân hơn, năng lượng sẽ được giải phóng và một photon thực được phát ra - photon này có thể quan sát được bằng mắt người nếu nó có bước sóng ứng với ánh sáng nhìn thấy hoặc bởi một màng như phim ảnh, chẳng hạn. Cũng như vậy, nếu một photon thực va chạm với một nguyên tử nó có thể làm cho một electron chuyển từ quỹ đạo gần hạt nhân hơn sang quỹ đạo xa hơn. Quá trình này đã sử dụng hết năng lượng của photon, vì vậy nó đã bị hấp thụ.
Loại lực thứ ba được gọi là lực hạt nhân yếu. Nó gây ra sự phóng xạ và chỉ tác dụng lên các hạt có spin 1/2 chứ không tác dụng lên các hạt có spin 0, 1 hoặc 2 như photon và graviton. Lực hạt nhân yếu chỉ được hiểu thấu đáo từ năm 1967, khi Abdus Salam ở trường Imperal College, London và Steven Weinberg ở Đại học Harvard đưa ra các lý thuyết thống nhất tương tác này với tương tác điện từ, hệt như Maxwell đã thống nhất lực điện với lực từ khoảng 100 năm trước. Họ đưa ra giả thuyết cho rằng, ngoài photon, còn có ba hạt spin 1 khác gọi là các hạt boson mang lực yếu. Đó là các hạt W+, Wvà Zo, mỗi hạt có khối lượng khoảng 100 GeV (GeV là giga electron-volt, bằng một tỷ electron-volt). Lý thuyết Weinberg - Salam đã đưa ra một tính chất gọi là sự phá vỡ đối xứng tự phát. Điều này có nghĩa là một số hạt tưởng như là hoàn toàn khác nhau ở năng lượng thấp thực tế lại là cùng một loại hạt, chỉ có điều ở trạng thái khác nhau mà thôi. Ở mức năng lượng cao, tất cả các hạt này phản ứng hoàn toàn tương tự nhau. Hiệu ứng này khá giống với hành trạng của quả cầu trong trò quay xổ số. Ở mức năng lượng cao (tức khi bánh xe quay nhanh), quả cầu về căn bản phản ứng theo một cách, đó là quay tròn, quay tròn. Nhưng khi bánh xe quay chậm lại, năng lượng của quả cầu giảm và cuối cùng quả cầu sẽ rơi vào một trong số 36 rãnh trong bánh xe. Nói một cách khác, ở mức năng lượng thấp, quả cầu có thể tồn tại trong 36 trạng thái khác nhau. Nếu vì một nguyên nhân nào đó, chúng ta chỉ có thể quan sát được quả cầu ở mức năng lượng thấp, ta có thể nghĩ rằng có 36 loại quả cầu khác nhau. Trong lý thuyết Weinberg - Salam, ở những mức năng lượng lớn hơn 100 GeV nhiều, ba hạt mới và photon phản ứng một cách hoàn toàn tương tự nhau. Ở những mức năng lượng thấp hơn, điều mà ta hay gặp trong những tình huống bình thường, thì sự đối xứng này giữa các hạt sẽ bị phá vỡ. W+, W- và Zo khi đó sẽ có khối lượng lớn, và làm cho các lực mà chúng mang có tầm tác dụng ngắn. Vào thời Salam và Weinberg đưa ra lý thuyết của mình, còn ít người tin họ và các máy gia tốc hạt còn chưa đủ mạnh để đạt tới năng lượng 100 GeV - năng lượng cần phải có để tạo ra các hạt W+, W- và Zo thực. Tuy nhiên, khoảng gần mười năm sau, những tiên đoán khác của lý thuyết đó ở năng lượng thấp phù hợp rất tốt với thực nghiệm, khiến cho vào năm 1979 Salam và Weinberg đã được trao giải thưởng Nobel về vật lý cùng với Sheldon Glashow, một nhà vật lý cũng ở Đại học Harvard và cũng đưa ra một lý thuyết tương tự thống nhất lực điện từ và lực hạt nhân yếu. Ủy ban trao giải Nobel đã hoàn toàn yên tâm, không sợ mắc sai lầm khi mà vào năm 1983 tại CERN (Trung tâm nghiên cứu hạt nhân châu u) người ta đã phát hiện được ba hạt W+, W- và Zo với khối lượng và các tính chất khác đúng như lý thuyết đã tiên đoán. Carlo Rubbia, người lạnh đạo một nhóm nghiên cứu gồm khoảng vài trăm nhà vật lý - tác giả của phát minh đó - đã được trao giải thưởng Nobel vào năm 1984 cùng với Simon Van der Meer, một kỹ sư ở CERN, người đã phát triển một hệ thống tích lũy phản vật chất được sử dụng trong phát minh trên. (Thật khó đặt một dấu ấn trong vật lý thực nghiệm những ngày này nếu bạn không ở đỉnh cao!).
Loại lực thứ tư là lực hạt nhân mạnh. Đây là lực giữ cho các hạt quark ở trong proton và neutron ở trong hạt nhân nguyên tử. Người ta tin rằng lực này được mang bởi một hạt có spin 1 khác gọi là gluon. Hạt gluon chỉ tương tác với chính nó và với các quark. Lực hạt nhân mạnh có một tính chất rất lạ gọi là "sự cầm tù": nó luôn luôn liên kết các hạt này lại thành những tổ hợp không có mầu.
Như vậy ta không thể có một hạt quark riêng rẽ tự nó vì nó sẽ có màu (đỏ, xanh hoặc lục). Thay vì thế, một quark đỏ cần phải liên kết với một quark xanh và một quark lục bằng một “dây” các gluon (đỏ + xanh + lục = trắng).
Một tam tuyến như thế tạo nên một proton hoặc một neutron. Một khả năng khác là cặp tạo bởi một quark và một phản-quark (đỏ + phản-đỏ, hoặc xanh + phản-xanh, hoặc lục + phản-lục = trắng). Các tổ hợp như vậy tạo nên các hạt đã biết như các meson là những hạt không bền, vì quark và phản-quark có thể hủy nhau tạo thành các electron và các hạt khác. Tương tự, sự cầm tù cũng không cho phép có một gluon riêng lẻ tự nó, vì các gluon cũng có màu. Thay vì thế, người ta cần phải có một tập hợp các gluon với tổng màu là trắng. Một tập hợp như thế tạo nên một hạt không bền gọi là glueball.
Việc "sự cầm
tù" không cho phép chúng ta quan sát được một hạt quark hoặc một gluon cô
lập dường như làm cho toàn bộ khái niệm về các quark và gluon như các hạt trở
nên hơi có vẻ siêu hình. Tuy nhiên, lực hạt nhân mạnh còn có một tính chất
khác, gọi là sự tự do tiệm cận, làm cho khái niệm về các hạt quark và gluon trở
nên hoàn toàn xác định. Ở những mức năng lượng bình thường, lực hạt nhân mạnh
thực tế là rất mạnh và nó liên kết các hạt quark rất chặt với nhau. Tuy nhiên,
những thực nghiệm trên các máy gia tốc lớn cho thấy, ở những mức năng lượng
cao, lực mạnh trở nên yếu hơn nhiều và các quark cũng như các gluon xử sự gần
như các hạt tự do.
Hình 5.2: Ảnh chụp sự va chạm của một proton và một
phản-proton ở mức năng lượng cao. Hạt quark sinh ra tạo ra các tia trong hình.
Hình 5.2 cho thấy bức ảnh chụp sự va chạm của một proton và một phảnproton mức
ở năng lượng cao. Một số hạt quark gần như tự do đã được tạo ra và làm xuất
hiện các “tia” vết nhìn rõ trên hình vẽ. Thành công của sự thống nhất các lực
điện từ và hạt nhân yếu đã dẫn tới nhiều cố gắng định kết hợp hai lực này với
lực hạt nhân mạnh nhằm xây dựng một lý thuyết gọi là lý thuyết thống nhất lớn
(viết tắt là GUT - Grand Unified Theory). Cái tên này có vẻ hơi cường điệu, vì
các lý thuyết như vậy chưa hoàn toàn là lớn và cũng chưa thống nhất được hoàn
toàn, do chúng không bao gồm cả lực hấp dẫn. Chúng cũng lại chưa phải là những
lý thuyết thực sự hoàn chỉnh vì còn chứa nhiều tham số có giá trị không thể
tiên đoán được từ lý thuyết mà lại cần phải chọn để làm khớp với thực nghiệm.
Tuy nhiên, những lý thuyết này là một bước tiến tới một lý thuyết thống nhất
đầy đủ và hoàn chỉnh. Tư tưởng cơ bản của các GUT là, như đã nói ở trên, lực
hạt nhân mạnh trở nên yếu hơn khi ở năng lượng cao. Trái lại, các lực điện từ
và hạt nhân yếu - vốn không có tính tự do tiệm cận - lại mạnh hơn lên ở những
mức năng lượng đó. Vì vậy, ở một mức năng lượng rất cao nào đó - gọi là năng
lượng thống nhất lớn - cả ba lực này sẽ có cường độ như nhau và như vậy có thể
chỉ là những mặt khác nhau của cùng một lực duy nhất. Các GUT cũng tiên đoán
rằng ở năng lượng này, các hạt vật chất khác nhau có spin 1/2, như các quark và
electron, về căn bản cũng sẽ hoàn toàn như nhau và như vậy là đạt tới một sự
thống nhất nữa. Giá trị của năng lượng thống nhất lớn còn chưa được biết một cách
chính xác, nhưng có lẽ ít nhất cũng phải cỡ một ngàn triệu triệu GeV. Thế hệ
các máy gia tốc hạt hiện nay có thể làm cho các hạt va chạm ở năng lượng cỡ 100
GeV và các máy gia tốc dự định sẽ xây dựng có thể nâng con số này lên tới cỡ
vài ngàn GeV. Nhưng một máy đủ mạnh để gia tốc các hạt tới năng lượng thống
nhất lớn phải có kích thước cỡ gần bằng cả hệ mặt trời, điều mà bối cảnh kinh
tế hiện nay không cho phép. Như vậy ta không thể kiểm chứng các GUT một cách
trực tiếp trong phòng thí nghiệm được. Tuy nhiên, cũng như đối với trường hợp
lý thuyết thống nhất lực điện từ và hạt nhân yếu, có những hệ quả của lý thuyết
ở năng lượng thấp mà chúng ta có thể kiểm chứng được.
Lý thú nhất trong số các
hệ quả này là tiên đoán cho rằng các proton - tức là các hạt tạo nên phần lớn
khối lượng của vật chất thông thường - có thể tự phân rã thành các hạt nhẹ hơn
như các phản electron. Sở dĩ điều này có thể là bởi vì ở năng lượng thống nhất
lớn không có sự khác nhau căn bản giữa quark và phản electron. Ba quark trong
proton thường không có đủ năng lượng để biến đổi thành các phản electron, nhưng
rất hiếm hoi, có thể một trong ba hạt đó có đủ năng lượng để thực hiện biến đổi
trên, bởi vì nguyên lý bất định nói rằng năng lượng của các quark trong proton
không thể cố định một cách chính xác. Và khi đó, proton có thể phân rã. Xác
suất để một hạt quark có đủ năng lượng là thấp tới mức người ta cần phải chờ
đợi khoảng một triệu triệu triệu triệu triệu (1 và ba mươi con số 0 tiếp sau)
năm. Như vậy, người ta có thể xem rằng khả năng phân rã tự phát của proton là
không thể kiểm chứng bằng thực nghiệm được. Tuy nhiên, người ta tăng cơ may
phát hiện sự phân rã bằng cách quan sát một số lượng lớn vật chất chứa một số
rất lớn proton. (Ví dụ, nếu người ta quan sát một số lượng proton cỡ 1 và ba
mươi con số 0 tiếp sau trong suốt một năm, thì theo GUT, đơn giản nhất người ta
có thể hy vọng quan sát được hơn một vòng phân rã của proton). Nhiều thí nghiệm
như thế đã được thực hiện, nhưng chưa có một thí nghiệm nào cho một bằng chứng
xác thực về sự phân rã của proton hoặc neutron. Một thí nghiệm đã dùng tới
8.000 tấn nước và được thực hiện ở mỏ muối Morton bang Ohio, Hoa Kỳ (để tránh
những sự kiện khác do tia vũ trụ gây ra lẫn lộn với sự phân rã của proton). Vì
không có một phân rã tự phát nào của proton quan sát được trong quá trình thực
nghiệm, người ta có thể ước tính được rằng thời gian sống của proton phải lớn
hơn 10 triệu triệu triệu triệu triệu (1 và ba mươi con số 0 tiếp sau) năm. Con
số này còn lớn hơn cả thời gian sống của proton được tiên đoán bởi lý thuyết
thống nhất lớn đơn giản nhất, nhưng cũng có những lý thuyết tinh xảo hơn tiên
đoán thời gian sống đó còn lâu hơn. Như vậy cần phải có những thí nghiệm nhạy
hơn nữa dùng những lượng vật chất còn lớn hơn nữa để kiểm chứng những lý thuyết
đó.
Mặc dù rất khó mà quan sát được sự phân rã tự phát của proton nhưng cũng có
thể chính sự tồn tại của chúng ta lại là kết quả của quá trình ngược lại, quá
trình tạo ra các proton hay đơn giản hơn là tạo ra các quark từ một tình huống
ban đầu trong đó số quark không nhiều hơn số phản-quark (giả thuyết này là cách
tự nhiên nhất để hình dung sự khởi phát của vũ trụ). Vật chất trên trái đất chủ
yếu được tạo bởi các proton và neutron, và đến lượt mình các hạt này được tạo
bởi các quark. Hoàn toàn không có các phảnproton và phản-neutron tạo bởi các
phản-quark, trừ một số ít do các nhà vật lý tạo ra trong các máy gia tốc lớn.
Chúng ta có những bằng chứng từ các tia vũ trụ cho thấy điều này cũng đúng đối
với vật chất trên thiên hà chúng ta: không có các phản-proton và phản-neutron
trừ một số ít được tạo ra như các cặp hạt/phản hạt trong các va chạm ở năng
lượng cao. Nếu có những vùng lớn phản vật chất trong thiên hà chúng ta, thì
chúng ta phải quan sát thấy một lượng lớn bức xạ tới từ vùng ranh giới giữa các
vùng vật chất và phản vật chất, nơi nhiều hạt có thể va chạm với các phản hạt
của chúng, rồi hủy nhau tạo thành các bức xạ năng lượng cao.
Chúng ta không có
bằng chứng trực tiếp cho thấy vật chất ở các thiên hà khác, bởi các proton và
neutron, hay bởi các phản-proton và phản-neutron, nhưng nó phải chỉ là loại này
hoặc loại kia: không thể có sự hỗn hợp trong một thiên hà, bởi vì nếu không như
vậy, chúng ta lại sẽ phải quan sát được một lượng lớn bứa xạ sinh ra do sự hủy.
Do đó, chúng ta tin rằng tất cả các thiên hà đều được tạo bởi các quark hơn là
các phản-quark, còn khả năng một số thiên hà là vật chất và một số thiên hà
khác là phản-vật chất thuần túy là điều rất đáng ngờ.
Vậy tại sao số lượng các
quark lại lớn hơn nhiều so với số lượng các phản-quark? Tại sao số lượng mỗi
loại lại không bằng nhau? Cũng may cho chúng ta là số lượng của chúng không
bằng nhau, bởi vì nếu không thì gần như hầu hết các quark và phản-quark sẽ hủy
nhau ở giai đoàn đầu của vũ trụ và để cho vũ trụ chỉ còn chứa đầy bức xạ, trừ
một lượng rất ít vật chất. Khi đó sẽ chẳng có các thiên hà, chẳng có các vì sao
và cũng chẳng có các hành tinh nơi đời sống của con người có thể phát triển
được. May mắn thay, các lý thuyết thống nhất lớn đưa ra một cách lý giải tại
sao vũ trụ hiện nay lại chứa một số lượng quark nhiều hơn phản-quark, cho dù
lúc ban đầu số lượng mỗi loại có thể bằng nhau. Như chúng ta đã thấy, các GUT
cho phép các quark biến đổi thành các electron ở năng lượng cao. Chúng cũng cho
phép các quá trình ngược lại, các phản-quark biến thành electron và các
electron và phảnelectron biến thành phản-quark và quark. Có một thời gian trong
giai đoạn rất sớm của vũ trụ khi mà vũ trụ nóng tới mức năng lượng của các hạt
đủ cao để cho các biến hóa đó có thể xảy ra. Nhưng tại sao xu hướng biến thành
quark lại nhiều hơn tạo thành phản-quark? Nguyên do là các định luật vật lý
không hoàn toàn như nhau đối với hạt và phản hạt. Cho đến tận năm 1956 người ta
vẫn tin rằng các định luật vật lý đều tuân theo ba đối xứng có tên là C, P và T
một cách riêng biệt. Đối xứng C có nghĩa là các định luật đối với hạt và phản
hạt là như nhau. Đối xứng P có nghĩa là các định luật là như nhau đối với một
tình huống bất kỳ và ảnh gương của nó (ảnh gương của một hạt quay theo hướng
phải sẽ là hạt quay theo hướng trái). Còn đối xứng T có nghĩa là nếu ta đảo
ngược chiều chuyển động của tất cả các hạt và phản hạt thì hệ sẽ trở lại các
trạng thái mà nó đã qua ở những thời điểm sớm hơn; nói một cách khác, các định
luật sẽ không thay đổi theo hướng tiến hoặc lùi của thời gian.
Năm 1956 hai nhà
vật lý Mỹ là Tsung-Dao Lee và Chen Ninh Yang đã đưa ra giả thuyết rằng lực yếu
không tuân theo đối xứng P. Nói một cách khác, lực yếu làm cho vũ trụ phát
triển theo cách khác với cách mà ảnh gương của vũ trụ phát triển. Cũng năm đó
một đồng nghiệp của họ là ChienShiung Wu đã chứng minh được rằng tiên đoán đó
là đúng đắn. Bà đã làm điều đó bằng cách sắp hạt nhân của các nguyên tử phóng
xạ trong từ trường sao cho chúng quay theo cùng một hướng và chứng tỏ rằng các
electron được phát ra theo một hướng nhiều hơn theo hướng khác. Năm sau Lee và
Yang đã được trao giải thưởng Nobel cho ý tưởng của họ. Người ta cũng thấy rằng
lực yếu không tuân theo đối xứng C . Điều này có nghĩa là lực yếu làm cho vũ
trụ gồm các phản hạt xử sự khác với vũ trụ của chúng ta. Tuy nhiên, dường như
lực yếu lại tuân theo đối xứng tổ hợp CP. Nghĩa là vũ trụ sẽ phát triển theo
cách hệt như ảnh gương của nó nếu thêm vào đó mỗi hạt được thay bằng phản hạt
của nó! Tuy nhiên, vào năm 1964 hai người Mỹ nữa là J. W. Cronin và Val Fitch
đã phát hiện ra rằng đối xứng CP không được tuân theo trong phân rã của những
hạt gọi là K-Meson. Cronin và Fitch cuối cùng đã được trao giải thưởng Nobel
cho công trình của họ vào năm 1980. (Khá nhiều giải thưởng đã được trao để
chứng tỏ rằng vũ trụ không đơn giản như chúng ta đã nghĩ).
Có một định lý toán
học nói rằng mọi ý thyết tuân theo cơ học lượng tử và thuyết tương đối đều phải
luôn luôn tuân theo đối xứng tổ hợp CPT. Nói một cách khác, vũ trụ sẽ xử sự như
trước nếu ta thay hạt bằng phản hạt. Lấy ảnh gương và nghịch đảo hướng thời
gian. Nhưng Cronin và Fitch đã chứng minh được rằng nếu người ta thay hạt bằng
phản hạt và lấy ảnh gương nhưng không nghịch đảo hướng thời gian thì vũ trụ
không xử sự như trước nữa. Do đó các định luật vật lý cần phải thay đổi nếu ta
đổi hướng thời gian, nghĩa là chúng không tuân theo đối xứng T.
Chắc chắn là
trong giai đoạn đầu, vũ trụ không tuân theo đối xứng T: vì thời gian trôi về
phía trước theo hướng vũ trụ giãn nở (nếu thời gian trôi giật lùi, vũ trụ sẽ co
lại). Và do có những lực không tuân theo đối xứng T, suy ra rằng vì vũ trụ giãn
nở nên những lực này có thể làm cho các phản - electron biến thành quark nhiều
hơn các electron biến thành phản - quark. Sau đó, vì vụ trụ giãn nở và lạnh đi,
các phản quark sẽ hủy với các quark, nhưng vì có nhiều quark hơn phản-quark nên
một số nhỏ quark còn dư lại tạo nên vật chất mà chúng ta thấy hôm nay, trong đó
có cả bản thân chúng ta. Như vậy chính sự tồn tại của chúng ta có thể được xem
như một bằng chứng khẳng định các lý thuyết thống nhất lớn, mặc dù mới chỉ là
một khẳng định định tính mà thôi. Nhưng bất định còn nhiều tới mức người ta
không thể tiên đoán được số lượng các quark còn lại sau quá trình hủy hoặc thậm
chí còn chưa tiên đoán được các hạt còn lại là quark hay phản-quark. (Tuy
nhiên, nếu số hạt dư thừa là phản-quark thì chúng ta đơn giản có thể gọi
phản-quark là quark và quark là phản-quark).
Các lý thuyết thống nhất lớn không
bao hàm lực hấp dẫn. Điều này không phải là quá nghiêm trọng bởi vì hấp dẫn là
lực yếu tới mức các hiệu ứng của nó thường có thể bỏ qua khi đề cập tới các hạt
cơ bản trong nguyên tử. Tuy nhiên, vì nó có tầm tác dụng dài và lại luôn luôn
là lực hút nên các hiệu ứng của nó đều được cộng lại. Vì vậy đối với một số
lượng hạt vật chất đủ lớn lực hấp dẫn có thể sẽ lấn át tất cả các lực khác.
Điều này giải thích tại sao hấp dẫn chính là lực quyết định sự tiến hóa của vũ
trụ. Thậm chí đối với các vật thể có kích thước như một ngôi sao thôi, lực hấp
dẫn cũng đã có thể thắng tất cả các lực khác và làm cho ngôi sao bị co lại.
Công trình của tôi trong những năm 1980 tập trung vào các lỗ đen - một đối
tượng có thể là kết quả co lại của một ngôi sao - và lực hấp dẫn xung quanh nó.
Chính điều này đã dẫn tới những gợi ý đầu tiên về việc phải kết hợp cơ học lượng
tử với thuyết tương đối rộng - một hình bóng đầu tiên về thuyết lượng tử của
hấp dẫn trong tương lai.
Chương 6:
Lỗ đen
Thuật ngữ lỗ đen còn rất mới. Nó được
nhà khoa học người Mỹ John Wheeler đưa ra vào năm 1969 nhằm mô tả một cách hình
tượng một ý tưởng bắt nguồn ít nhất khoảng 200 năm trước, vào thời mà còn có
hai lý thuyết về ánh sáng: một lý thuyết được Newton ủng hộ cho rằng ánh sáng
được tạo thành từ các hạt, còn lý thuyết kia cho rằng nó được tạo thành từ các
sóng.
Hiện nay ta biết rằng cả hai lý thuyết trên đều đúng. Theo quan điểm nhị
nguyên sóng/hạt của cơ học lượng tử, thì ánh sáng có thể xem như vừa là sóng
vừa là hạt. Theo lý thuyết sóng về ánh sáng thì không rõ nó sẽ phản ứng thế nào
đối với hấp dẫn. Nhưng nếu ánh sáng được tạo thành từ các hạt thì người ta có
thể nghĩ rằng nó sẽ bị tác động bởi hấp dẫn hệt như các viên đạn đại bác, tên
lửa và các hành tinh. Ban đầu người ta tưởng rằng ánh sáng truyền với vận tốc
lớn vô hạn và như thế thì hấp dẫn không thể nào làm cho nó chậm lại được, nhưng
phát minh của Roemer cho thấy ánh sáng truyền với vận tốc hữu hạn, điều đó có
nghĩa là hấp dẫn có thể có tác động quan trọng.
Dựa trên giải thuyết đó, một
giảng viên của Đại học Cambridge là John Michell đã viết một bài báo in trên
tạp chí “những văn kiện triết học của Hội Hoàng gia London” (Philosophical
Transaction of the Royal Society of London) vào năm 1783, trong đó ông chỉ ra
rằng một ngôi sao đủ nặng và đặc có thể có trường hấp dẫn mạnh tới mức không
cho ánh sáng thoát ra được: bất kỳ ánh sáng nào phát ra từ bề mặt ngôi sao đó
cũng đều bị kéo ngược trở lại trước khi nó kịp truyền đi rất xa. Michell cho
rằng có thể có một số rất lớn những sao như vậy. Mặc dù chúng ta không thể nhìn
thấy những ngôi sao đó bởi vì ánh sáng từ những ngôi sao đó không đến được
chúng ta, nhưng chúng ta vẫn cảm thấy được lực hút hấp dẫn của chúng. Những đối
tượng đó là cái bây giờ chúng ta gọi là lỗ đen, bởi vì thực tế chúng là những
khoảng đen trong vũ trụ.
Một giả thuyết tương tự cũng được một nhà khoa học
người Pháp là hầu tước de Laplace đưa ra sau đó ít năm, tất nhiên là độc lập
với Michell. Một điều khá lý thú là Laplace chỉ đưa ra giả thuyết này vào lần
xuất bản thứ nhất và thứ hai của cuốn sách “Hệ thống thế giới”, nhưng rồi lại
bỏ đi trong những lần xuất bản sau, chắc ông cho rằng đó là một ý tưởng điên
rồ. (Cũng như lý thuyết hạt của ánh sáng không được ủng hộ trong suốt thế kỷ
19, và dường như mọi chuyện đều có thể giải thích bằng lý thuyết sóng, nhưng
theo lý thuyết sóng thì hoàn toàn không rõ ánh sáng bị hấp dẫn tác động như thế
nào). Thực tế, xem ánh sáng như những viên đạn đại bác trong lý thuyết hấp dẫn
của Newton là hoàn toàn không thích hợp bởi vì ánh sáng có vận tốc cố định.
(Một viên đạn đại bác khi bắn lên từ mặt đất sẽ bị lực hấp dẫn làm cho chuyển
động chậm lại và cuối cùng sẽ dừng lại và rơi xuống, trong khi đó hạt photon
vẫn phải tiếp tục bay lên với vận tốc không đổi. Vậy thì lực hấp dẫn của Newton
làm thế nào có thể tác động tới ánh sáng?). Phải mãi cho tới khi Einstein đưa
ra thuyết tương đối rộng vào năm 1915, ta mới có một lý thuyết nhất quán cho
biết hấp dẫn tác động như thế nào đến ánh sáng. Và thậm chí ngay cả khi đó cũng
phải mất một thời gian sau người ta mới hiểu được những hệ quả của lý thuyết
đối với các sao nặng.
Để hiểu một lỗ đen có thể được hình thành như thế nào,
trước hết chúng ta phải hiểu vòng đời của một ngôi sao. Một ngôi sao được hình
thành khi một lượng lớn khí (mà chủ yếu là hydro) bắt đầu co lại do lực hút hấp
dẫn của chính mình. Và vì khi các khối khí co lại, nên các nguyên tử khí va
chạm nhau thường xuyên hơn và ngày càng có vận tốc lớn hơn dẫn tới khối khí
nóng lên. Cuối cùng, khối khí sẽ nóng tới mức khi các nguyên tử hydro va chạm
nhau chúng sẽ không rời nhau ra nữa mà liên kết với nhau thành nguyên tử heli.
Nhiệt giải phóng ra từ phản ứng này - giống như vụ nổ của bom khinh khí - sẽ
làm cho ngôi sao phát sáng. Lượng nhiệt đó cũng làm tăng áp suất của khối khí
cho tới khi đủ để cân bằng với lực hút hấp dẫn và khối khí ngừng co lại. Điều
này cũng hơi giống với trường hợp quả khí cầu, trong đó có sự cân bằng giữa áp
suất của không khí bên trong có xu hướng làm cho quả khí cầu phồng ra và sức
căng của vỏ cao su có xu hướng làm cho nó co lại. Những ngôi sao sẽ còn ổn định
như thế một thời gian dài với nhiệt từ các phản ứng hạt nhân tỏa ra cân bằng
với lực hút hấp dẫn. Tuy nhiên, cuối cùng rồi các ngôi sao cũng sẽ dùng hết số
khí hydro và các nhiên liệu hạt nhân của nó. Một điều thật nghịch lý là các
ngôi sao càng có nhiều nhiên liệu lúc bắt đầu thì sẽ hết càng sớm. Đó là bởi vì
ngôi sao càng nặng thì nó phải càng nóng để cân bằng với lực hút hấp dẫn. Mà nó
đã càng nóng thì sẽ dùng hết số nhiên liệu của nó càng nhanh. Mặt trời của
chúng ta có lẽ còn đủ nhiên liệu cho khoảng gần năm ngàn triệu năm nữa, nhưng
những ngôi sao nặng hơn có thể dùng hết nhiên liệu của chúng chỉ trong khoảng
một trăm triệu năm, ít hơn tuổi của vũ trụ rất nhiều. Khi một ngôi sao hết
nhiên liệu, nó sẽ lạnh đi và co lại. Chỉ cuối những năm 20, người ta mới hiểu
được điều gì xảy ra đối với nó khi đó.
Năm 1928 một sinh viên Ấn Độ mới tốt
nghiệp đại học tên là Subrahmanyan Chandrasekhar đã dong thuyền tới nước Anh để
theo học nhà thiên văn ngài Arthur Eddington, một chuyên gia về thuyết tương
đối rộng ở Cambridge. (Theo một số dư luận, thì một nhà báo vào đầu những năm 20
có nói với Eddington, rằng ông ta nghe nói cả thế giới chỉ có ba người hiểu
được thuyết tương đối rộng. Eddington im lặng một lát rồi nói: “Tôi còn đang cố
nghĩ xem người thứ ba là ai”). Trong suốt chuyến chu du của mình từ Ấn Độ,
Chandrasekhar đã giải quyết được vấn đề: một ngôi sao có thể lớn tới mức nào để
khi đã sử dụng hết nhiên liệu vẫn chống chọi được với lực hấp dẫn riêng của nó.
Ý tưởng của ông như sau: khi một ngôi sao trở nên nhỏ, các hạt vật chất sẽ ở
rất gần nhau, và vì vậy theo nguyên lý loại trừ Pauli, chúng cần phải có vận
tốc khác nhau. Điều này làm cho chúng chuyển động ra xa nhau và vì thế có xu
hướng làm cho sao giãn nở ra. Do đó một ngôi sao có thể tự duy trì để có một
bán kính không đổi bằng cách giữ cân bằng giữa lực hút hấp dẫn và lực đẩy xuất
hiện do nguyên lý loại trừ, hệt như ở giai đoạn đầu trong cuộc đời của nó lực
hấp dẫn được cân bằng bởi nhiệt.
Tuy nhiên, Chandrasekhar thấy rằng lực đẩy do
nguyên lý loại trừ tạo ra có một giới hạn. Lý thuyết tương đối rộng đặt một
giới hạn cho sự khác biệt cực đại về vận tốc của các hạt vật chất trong các
ngôi sao - đó là vận tốc của ánh sáng. Điều này có nghĩa là khi một ngôi sao đủ
đặc, lực đẩy gây bởi nguyên lý loại trừ sẽ nhỏ hơn lực hút hấp dẫn.
Chandrasekhar tính ra rằng một ngôi sao lạnh có khối lượng lớn hơn khối lượng
mặt trời chừng 1,5 lần sẽ không thể tự chống chọi nổi với lực hấp dẫn riêng của
nó. (Khối lượng này hiện nay được gọi là giới hạn Chandrasekhar). Phát minh
tương tự cũng được nhà khoa học người Nga Lev Davidovich Landau đưa ra vào cùng
thời gian đó.
Điều này có những hệ quả quan trọng đối với số phận tối hậu của
các ngôi sao nặng. Nếu khối lượng của một ngôi sao nhỏ hơn giới hạn
Chandrasekhar, thì cuối cùng nó cũng có thể ngừng co lại và yên phận ở trạng
thái cuối cùng khả dĩ như “một sao lùn trắng” với bán kính chỉ khoảng vài ngàn
dặm và mật độ khoảng vài trăm tấn trong một inch khối. Sao lùn trắng chống đỡ
được với lực hút hấp dẫn là bởi lực đẩy do nguyên lý loại trừ sinh ra giữa các
electron trong vật chất của nó. Chúng ta đã quan sát được một số khá lớn những
sao lùn trắng này. Một trong những sao lùn đầu tiên quan sát được là ngôi sao
quay xung quanh sao Thiên Lang (Sirius) - ngôi sao sáng nhất trên bầu trời đêm.
Landau chỉ ra rằng còn có một trạng thái cuối cùng khả dĩ nữa cho các ngôi sao
có khối lượng giới hạn cỡ 1 đến 2 lần lớn hơn khối lượng mặt trời nhưng có kích
thước còn nhỏ hơn cả các sao lùn trắng nhiều. Các sao này chống chọi được với
lực hút hấp dẫn, bởi lực đẩy do nguyên lý loại trừ tạo ra giữa các neutron và
proton lớn hơn là giữa các electron. Do đó chúng được gọi là các sao neutron.
Chúng có bán kính chỉ cỡ mươi dặm và có mật độ cỡ vài trăm triệu tấn trên một
inch khối. Khi sao neutron lần đầu tiên được tiên đoán, người ta không có cách
nào quan sát được chúng và thực tế mãi rất lâu về sau người ta cũng không phát
hiện được.
Chandrasekhar đã chứng minh được rằng nguyên lý loại trừ không thể ngăn chặn được sự co lại của các ngôi sao có khối lượng lớn hơn giới hạn Chandrasekhar, nhưng vấn đề hiểu được điều gì sẽ xảy ra đối với những sao như vậy theo thuyết tương đối rộng thì phải tới năm 1939 mới được nhà khoa học trẻ người Mỹ là Robert Oppenheimer giải quyết lần đầu tiên. Tuy nhiên, kết quả của ông cho thấy rằng không có một hệ quả quan sát nào có thể phát hiện được bằng các kính thiên văn thời đó. Rồi chiến tranh thế giới thứ 2 xảy ra, và chính Oppenheimer lại cuốn hút vào dự án bom nguyên tử. Sau chiến tranh, vấn đề sự co lại do hấp dẫn bị lãng quên vì đa số các nhà khoa học bắt đầu lao vào các hiện tượng xảy ra trong quy mô nguyên tử và hạt nhân của nó. Tuy nhiên, vào những năm 60 sự quan tâm tới các vấn đề ở thang vĩ mô của thiên văn học và vũ trụ học lại sống dậy vì số lượng cũng như tầm quan sát thiên văn tăng lên rất lớn, do việc áp dụng những công nghệ hiện đại. Công trình của Oppenheimer khi đó lại được phát hiện lại và được mở rộng thêm bởi nhiều người khác.
Bức tranh mà hiện nay chúng ta có từ công trình của Oppenheimer như sau: trường hấp dẫn của ngôi sao làm thay đổi đường truyền của các tia sáng trong không-thời gian. Các nón ánh sáng - chỉ đường truyền trong khôngthời gian của các chớp sáng được phát ra từ đỉnh của nón - sẽ hơi bị uốn vào phía trong, phía gần với bề mặt của sao. Điều này có thể thấy được theo quỹ đạo cong của tia sáng phát từ những ngôi sao xa trong quá trình nhật thực. Vì ngôi sao nặng đang co lại, nên trường hấp dẫn ở bề mặt của nó ngày càng mạnh và nón ánh sáng càng bị uốn cong vào phía trong. Điều này làm cho tia sáng ngày càng khó thoát khỏi ngôi sao, và ánh sáng sẽ ngày càng mờ đi và đỏ hơn đối với người quan sát từ xa. Cuối cùng, khi ngôi sao đã co tới một bán kính tới hạn nào đó, trường hấp dẫn ở bề mặt của nó trở nên mạnh tới mức nón ánh sáng bị uốn vào phía trong nhiều đến nỗi ánh sáng không thể thoát ra được nữa (hình 6.1).
Khi ngôi sao đã co tới một bán kính tới hạn nào đó, trường hấp dẫn ở bề mặt của nó trở nên mạnh tới mức nón ánh sáng bị uốn vào phía trong nhiều đến nỗi ánh sáng không thể thoát ra được nữa. Theo thuyết tương đối thì không có gì có thể chuyển động nhanh hơn ánh sáng. Vì vậy, nếu ánh sáng không thể thoát ra được, thì cũng không có gì có thể thoát được ra; tất cả đều bị trường hấp dẫn kéo lại. Do đó, ta có một tập các sự cố, tức là một vùng trong không-thời gian, mà không có gì có thể thoát ra từ đó để đến được với người quan sát từ xa. Vùng này chính là cái mà người ta gọi là lỗ đen. Biên của vùng này được gọi là chân trời sự cố, và nó trùng với đường truyền của các tia sáng vừa chớm không thoát ra được khỏi lỗ đen.
Để hiểu được điều mà bạn sẽ thấy nếu bạn đang quan sát sự co lại của một ngôi sao để tạo thành lỗ đen, thì cần nhớ rằng trong thuyết tương đối không có khái niệm thời gian tuyệt đối. Mỗi một người quan sát có độ đo thời gian riêng của mình. Thời gian đối với người ở trên một ngôi sao sẽ khác thời gian của người ở xa, do có trường hấp dẫn của các ngôi sao. Giả sử có một nhà du hành vũ trụ quả cảm ở ngay trên bề mặt một ngôi sao đang co lại vào phía trong của nó, cứ mỗi một giây theo đồng hồ của anh ta lại gửi về con tàu đang quay quanh ngôi sao đó một tín hiệu. Ở thời điểm nào đó theo đồng hồ của anh ta, ví dụ lúc 11 giờ, ngôi sao co lại dưới bán kính tới hạn kích thước mà ở đó trường hấp dẫn bắt đầu mạnh tới mức không gì có thể thoát được ra, - và như vậy, các tín hiệu của nhà du hành không tới được con tàu nữa. Khi tới gần 11 giờ, các đồng nghiệp của nhà du hành quan sát từ con tàu thấy khoảng thời gian giữa hai tín hiệu liên tiếp do nhà du hành gửi về ngày càng dài hơn, nhưng trước 10 giờ 59 phút 59 giây hiệu ứng đó rất nhỏ. Họ chỉ phải đợi hơn một giây chút xíu giữa tín hiệu mà nhà du hành gửi về lúc 10 giờ 59 phút 58 giây và tín hiệu anh ta gửi về lúc đồng hồ anh ta chỉ 10 giờ 59 phút 59 giây, nhưng họ sẽ phải đợi vĩnh viễn viễn tín hiệu gửi lúc 11 giờ. Các sóng ánh sáng được phát từ bề mặt ngôi sao trong khoảng thời gian giữa 10 giờ 59 phút 59 giây và 11 giờ theo đồng hồ của nhà du hành sẽ được truyền qua một khoảng thời gian vô hạn, nếu đo từ con tàu. Khoảng thời gian giữa hai sóng ánh sáng liên tiếp tới con tàu mỗi lúc một dài hơn, do đó ánh sáng từ ngôi sao mỗi lúc một đỏ và nhợt nhạt hơn. Cuối cùng, ngôi sao sẽ mờ tối tới mức từ con tàu không thể nhìn thấy nó nữa; tất cả những cái còn lại chỉ là một lỗ đen trong không gian. Tuy nhiên, ngôi sao vẫn tiếp tục tác dụng một lực hấp dẫn như trước lên con tàu làm cho nó vẫn tiếp tục quay xung quanh lỗ đen.
Thực ra, kịch bản này không phải hoàn toàn là hiện thực vì vấn đề sau: Lực hấp dẫn càng yếu khi bạn càng ở xa ngôi sao, vì vậy lực hấp dẫn tác dụng lên chân nhà du hành vũ trụ quả cảm của chúng ta sẽ luôn luôn lớn hơn lực tác dụng lên đầu của anh ta. Sự khác biệt về lực đó sẽ kéo dài nhà du hành vũ trụ của chúng ta giống như một sợi mì hoặc xé đứt anh ta ra trước khi ngôi sao co tới bán kính tới hạn, tại đó chân trời sự cố được hình thành! Tuy nhiên, chúng ta tin rằng trong vũ trụ có những vật thể lớn hơn rất nhiều, chẳng hạn như những vùng trung tâm của các thiên hà, cũng có thể co lại do hấp dẫn để tạo thành các lỗ đen; một nhà du hành vũ trụ ở trên một trong các vật thể đó sẽ không bị xé đứt trước khi lỗ đen được tạo thành. Thực tế, anh ta sẽ chẳng cảm thấy gì đặc biệt khi đạt tới bán kính tới hạn, và có thể vượt điểm-không-đường-quay-lại mà không nhận thấy. Tuy nhiên, chỉ một ít giờ sau, khi vùng đó tiếp tục co lại, sự khác biệt về lực hấp dẫn tác dụng lên chân và đầu sẽ lại trở nên mạnh tới mức nó sẽ xé đứt người anh ta.
Công trình mà Roger Penrose và tôi tiến hành giữa năm 1965 và 1970 chứng tỏ, rằng theo thuyết tương đối rộng, thì cần phải có một kỳ dị với mật độ và độ cong không-thời gian vô hạn bên trong lỗ đen. Điều này khá giống với vụ nổ lớn ở điểm bắt đầu, chỉ có điều ở đây lại là thời điểm cuối của một vật thể cùng nhà du hành đang co lại. Ở kỳ dị này, các định luật khoa học và khả năng tiên đoán tương lai đều không dùng được nữa. Tuy nhiên, một người quan sát còn ở ngoài lỗ đen sẽ không bị ảnh hưởng bởi sự mất khả năng tiên đoán đó vì không một tín hiệu nào hoặc tia sáng nào từ điểm kỳ dị đó tới được anh ta. Sự kiện đáng chú ý đó đã dẫn Roger Penrose tới giả thuyết về sự kiểm duyệt vũ trụ - một giả thuyết có thể phát biểu dưới dạng “Chúa căm ghét sự kỳ dị trần trụi”. Nói một cách khác, những kỳ dị được tạo ra bởi sự co lại do hấp dẫn chỉ xảy ra ở những nơi giống như lỗ đen - nơi mà chúng được che giấu kín đáo bởi chân trời sự cố không cho người ngoài nhìn thấy. Nói một cách chặt chẽ thì đây là mới là giả thuyết về sự kiểm duyệt vũ trụ yếu: nó bảo vệ cho những người quan sát còn ở ngoài lỗ đen tránh được những hậu quả do sự mất khả năng tiên đoán xảy ra ở điểm kỳ dị, nhưng nó hoàn toàn không làm được gì cho nhà du hành bất hạnh đã bị rơi vào lỗ đen.
Có một số nghiệm của các phương trình của thuyết tương đối rộng, trong đó nó cho phép nhà du hành của chúng ta có thể nhìn thấy điểm kỳ dị trần trụi: như vậy anh ta có thể tránh không đụng vào nó và thay vì anh ta có thể rơi qua một cái “lỗ sâu đục” và đi ra một vùng khác của vũ trụ. Điều này tạo ra những khả năng to lớn cho việc du hành trong không gian và thời gian, nhưng thật không may, những nghiệm đó lại rất không ổn định; chỉ cần một nhiễu động nhỏ, ví dụ như sự có mặt của nhà du hành, là đã có thể làm cho chúng thay đổi tới mức nhà du hành không còn nhìn thấy kỳ dị nữa cho tới khi chạm vào nó và thời gian của anh ta sẽ chấm hết . Nói cách khác, kỳ dị luôn luôn nằm ở tương lai chứ không bao giờ nằm ở quá khứ của anh ta. Giả thuyết kiểm duyệt vũ trụ mạnh phát biểu rằng trong nghiệm hiện thực thì các kỳ dị luôn luôn hoặc hoàn toàn nằm trong tương lai (như các kỳ dị do quá trình co lại do hấp dẫn) hoặc hoàn toàn nằm trong quá khứ (như vụ nổ lớn). Người ta rất hy vọng một trong hai giả thuyết kiểm duyệt là đúng, bởi vì ở gần các kỳ dị trần trụi sẽ có thể chu du về quá khứ. Trong khi điều này thật tuyệt vời đối với các nhà viết truyện khoa học viễn tưởng thì nó cũng có nghĩa là cuộc sống của bất kỳ ai đều không an toàn: một kẻ nào đó có thể mò về quá khứ giết chết bố hoặc mẹ của bạn trước khi bạn được đầu thai!
Chân trời sự cố, biên của vùng không - thời gian mà từ đó không gì thoát ra được, có tác dụng như một màng một chiều bao quanh lỗ đen: các vật, tỷ như nhà du hành khinh suất của chúng ta, có thể rơi vào lỗ đen qua chân trời sự cố, nhưng không gì có thể thoát ra lỗ đen qua chân trời sự cố (cần nhớ rằng chân trời sự cố là đường đi trong không-thời gian của ánh sáng đang tìm cách thoát khỏi lỗ đen, và không gì có thể chuyển động nhanh hơn ánh sáng). Có thể dùng lời của thi sĩ Dante nói về lối vào địa ngục để nói về chân trời sự cố: “Hỡi những người bước vào đây hãy vứt bỏ mọi hy vọng!”. Bất kỳ cái gì hoặc bất kỳ ai, một khi đã rơi qua chân trời sự cố thì sẽ sớm tới vùng có mật độ vô hạn và, chấm hết thời gian.
Thuyết tương đối rộng tiên đoán rằng các vật nặng khi chuyển động sẽ phát ra sóng hấp dẫn - những nếp gợn trong độ cong của không gian truyền với vận tốc của ánh sáng. Những sóng này tương tự như các sóng ánh sáng, là những gợn sóng của trường điện từ, nhưng sóng hấp dẫn khó phát hiện hơn nhiều. Giống như ánh sáng, sóng hấp dẫn cũng mang năng lượng lấy từ các vật phát ra nó. Do đó, hệ thống các vật nặng cuối cùng sẽ an bài ở một trạng thái dừng nào đó bởi vì năng lượng ở bất cứ dạng vận động nào đều được các sóng hấp dẫn mang đi. (Điều này gần tương tự với việc ném một cái nút xuống nước. Ban đầu, nó dập dềnh khá mạnh, nhưng rồi vì các gợn sóng mang dần đi hết năng lượng của nó, cuối cùng nó an bài ở một trạng thái dừng). Ví dụ, chuyển động của trái đất xung quanh mặt trời tạo ra các sóng hấp dẫn. Tác dụng của việc mất năng lượng sẽ làm thay đổi quỹ đạo trái đất, làm cho nó dần dần tiến tới gần mặt trời hơn, rồi cuối cùng chạm mặt trời và an bài ở một trạng thái dừng. Tuy nhiên, tốc độ mất năng lượng của trái đất và mặt trời rất thấp: chỉ cỡ đủ để chạy một lò sưởi điện nhỏ. Điều này có nghĩa là phải mất gần một ngàn triệu triệu triệu triệu năm trái đất mới đâm vào mặt trời và vì vậy chúng ta chẳng có lý do gì để lo lắng cả! Sự thay đổi quỹ đạo của trái đất cũng rất chậm khiến cho khó có thể quan sát được, nhưng chính hiện tượng này đã được quan sát thấy ít năm trước trong hệ thống có tên là PSR 1913+16 PSR là tên viết tắt của một pulsar (pulsar là chuẩn tinh: một loại sao neutron đặc biệt có khả năng phát đều đặn các xung sóng radio). Hệ thống này gồm hai sao neutron quay xung quanh nhau và sự mất năng lượng do phát sóng hấp dẫn làm cho chúng chuyển động theo đường xoắn ốc hướng vào nhau
Trong quá trình co lại do hấp dẫn của một ngôi sao để tạo thành một lỗ đen, các chuyển động sẽ nhanh hơn nhiều và vì vậy tốc độ năng lượng được chuyển đi cũng cao hơn nhiều. Do vậy mà thời gian để đạt tới sự an bài ở một trạng thái dừng sẽ không quá lâu. Vậy cái giai đoạn cuối cùng này nhìn sẽ như thế nào? Người ta cho rằng, nó sẽ phụ thuộc vào tất cả các đặc tính của ngôi sao. Có nghĩa là, nó không chỉ phụ thuộc vào khối lượng và tốc độ quay, mà còn phụ thuộc vào những mật độ khác nhau của các phần tử khác nhau của ngôi sao và cả những chuyển động phức tạp của các khí trong ngôi sao đó nữa. Và nếu các lỗ đen cũng đa dạng như những đối tượng đã co lại và tạo nên chúng thì sẽ rất khó đưa ra một tiên đoán nào về các lỗ đen nói chung.
Tuy nhiên, vào năm 1967, một nhà khoa học Canada tên là Werner Israel (ông sinh ở Berlin, lớn lên ở Nam Phi, và làm luận án tiến sĩ ở Ireland) đã tạo ra một bước ngoặt trong việc nghiên cứu các lỗ đen. Israel chỉ ra rằng, theo thuyết tương đối rộng thì các lỗ đen không quay là rất đơn giản; chúng có dạng cầu lý tưởng và có kích thước chỉ phụ thuộc vào khối lượng của chúng; hai lỗ đen như thế có khối lượng như nhau là hoàn toàn đồng nhất với nhau.
Thực tế, những lỗ đen này có thể được mô tả bằng một nghiệm riêng của phương trình Einstein đã được biết từ năm 1917, do Karl Schwarzchild tìm ra gần như ngay sau khi tuyết tương đối rộng được phát minh. Thoạt đầu, nhiều người, thậm chí ngay cả Israel, lý luận rằng, vì các lỗ đen cần phải có dạng cầu lý tưởng nên chúng chỉ có thể được tạo thành từ sự co lại của đối tượng có dạng cầu lý tưởng. Mà một ngôi sao chẳng bao giờ có thể có dạng cầu lý tưởng được, nên nó chỉ có thể co lại để tạo thành một kỳ dị trần trụi mà thôi.
Tuy nhiên, có một cách giải thích khác cho kết quả của Israel mà Roger Penrose và đặc biệt là John Wheeler rất ủng hộ. Họ lý luận rằng, những chuyển động nhanh trong quá trình co lại có nghĩa là các sóng hấp dẫn do nó phát ra sẽ làm cho nó có dạng cầu hơn và vào thời điểm an bài ở trạng thái dừng nó có dạng chính xác là cầu. Theo quan điểm này thì một ngôi sao không quay, bất kể hình dạng và cấu trúc bên trong phức tạp của nó, sau khi kết thúc quá trình co lại do hấp dẫn đều là một lỗ đen có dạng cầu lý tưởng với kích thước chỉ phụ thuộc vào khối lượng của nó. Những tính toán sau này đều củng cố cho quan điểm này và chẳng bao lâu sau nó đã được mọi người chấp nhận.
Kết quả của Israel chỉ đề cập trường hợp các lỗ đen được tạo thành từ các vật thể không quay. Năm 1963 Roy Kerr người New Zealand đã tìm ra một tập hợp nghiệm của các phương trình của thuyết tương đối mô tả các lỗ đen quay. Các lỗ đen “Kerr” đó quay với vận tốc không đổi, có kích thước và hình dáng chỉ phụ thuộc vào khối lượng và tốc độ quay của chúng. Nếu tốc độ quay bằng không, lỗ đen sẽ là cầu lý tưởng và nghiệm này sẽ trùng với nghiệm Schwarzchild. Nếu tốc độ quay khác 0, lỗ đen sẽ phình ra phía ngoài ở gần xích đạo của nó (cũng như trái đất và mặt trời đều phình ra do sự quay của chúng), và nếu nó quay càng nhanh thì sự phình ra sẽ càng mạnh. Như vậy, để mở rộng kết quả của Israel cho bao hàm được cả các vật thể quay, người ta suy đoán rằng một vật thể quay co lại để tạo thành một lỗ đen cuối cùng sẽ an bài ở trạng thái dừng được mô tả bởi nghiệm Kerr.
Năm 1970, một đồng nghiệp và cũng là nghiên cứu sinh của tôi, Brandon Carter đã đi được bước đầu tiên hướng tới chứng minh suy đoán trên. Anh đã chứng tỏ được rằng với điều kiện lỗ đen quay dừng có một trục đối xứng, giống như một con quay, thì nó sẽ có kích thước và hình dạng chỉ phụ thuộc vào khối lượng và tốc độ quay của nó. Sau đó vào năm 1971, tôi đã chứng minh được rằng bất kỳ một lỗ đen quay dừng nào đều cần phải có một trục đối xứng như vậy. Cuối cùng, vào năm 1973, David Robinson ở trường Kings College, London đã dùng kết quả của Carter và tôi chứng minh được rằng ước đoán nói trên là đúng. Những lỗ đen như vậy thực sự là nghiệm Kerr. Như vậy, sau khi co lại do hấp dẫn, lỗ đen sẽ an bài trong trạng thái có thể quay nhưng không xung động. Hơn nữa, kích thước hình dạng của nó chỉ phụ thuộc vào khối lượng và tốc độ quay chứ không phụ thuộc vào bản chất của vật thể bị co lại tạo nên nó. Kết quả này được biết dưới châm ngôn: “lỗ đen không có tóc”. Định lý “không có tóc” này có một tầm quan trọng thực tiễn to lớn bởi nó hạn chế rất mạnh các loại lỗ đen lý thuyết. Do vậy, người ta có thể tạo ra những mô hình chi tiết của các vật có khả năng chứa lỗ đen và so sánh những tiên đoán của mô hình với quan sát. Điều này cũng có nghĩa là một lượng rất lớn thông tin về vật thể co lại sẽ phải mất đi khi lỗ đen được tạo thành, bởi vì sau đấy tất cả những thứ mà ta có thể đo được về vật thể đó chỉ là khối lượng và tốc độ quay của nó. Ý nghĩa của điều này sẽ được thấy rõ ở chương sau.
Các lỗ đen chỉ là một trong số rất ít các trường hợp trong lịch sử khoa học, trong đó lý thuyết đã được phát triển rất chi tiết như một mô hình toán học trước khi có những bằng chứng từ quan sát xác nhận nó là đúng đắn.
Thực tế, điều này đã được dùng như một luận cứ chủ yếu của những người phản đối lỗ đen: làm sao người ta có thể tin rằng có những vật thể mà bằng chứng về sự tồn tại của nó chỉ là những tính toán dựa trên lý thuyết tương đối rộng, một lý thuyết vốn đã đáng ngờ? Tuy nhiên, vào năm 1963, Maarten Schmidt, một nhà thiên văn làm việc ở Đài thiên văn Palomar, Caliornia, Mỹ, đã đo được sự chuyển dịch về phía đỏ của một đối tượng mờ tựa như sao theo hướng một nguồn phát sóng radio có tên là 3C273 (tức là số của nguồn là 273 trong catalogue thứ 3 ở Cambridge). Ông thấy sự chuyển dịch này là quá lớn, nếu xem nó do trường hấp dẫn gây ra: nếu đó là sự chuyển dịch về phía đỏ do trường hấp dẫn gây ra thì đối tượng đó phải rất nặng và ở gần chúng ta tới mức nó sẽ làm nhiễu động quỹ đạo của các hành tinh trong Hệ mặt trời. Điều này gợi ý rằng sự chuyển dịch về phía đỏ này là do sự giãn nở của vũ trụ và vì vậy đối tượng đó phải ở rất xa chúng ta. Để thấy được ở một khoảng cách xa như thế vật thể đó phải rất sáng hay nói cách khác là phải phát ra một năng lượng cực lớn. Cơ chế duy nhất mà con người có thể nghĩ ra để miêu tả một năng lượng lớn như thế, là sự co lại do hấp dẫn không phải chỉ của một ngôi sao mà của cả vùng trung tâm của thiên hà. Nhiều đối tượng “tương tự sao” (chuẩn tinh), hay nói cách khác là các quasar, cũng đã được phát hiện. Tất cả đều có chuyển dịch lớn về phía đỏ. Nhưng tất cả chúng đều ở quá xa, khó quan sát để cho một bằng chứng quyết định về các lỗ đen.
Sự cổ vũ tiếp theo cho sự tồn tại của các lỗ đen là phát minh của Jocelyn Bell, một nghiên cứu sinh ở Cambridge, về những thiên thể phát các xung radio đều đặn. Thoạt đầu, Bell và người hướng dẫn của chị làAntony Hewish, nghĩ rằng có lẽ họ đã liên lạc được với một nền văn minh lạ trong thiên hà! Thực tế, trong buổi seminar khi họ thông báo phát minh của họ, tôi nhớ là họ đã gọi bốn nguồn phát sóng radio đầu tiên đó là LGM 1-4 với LGM là viết tắt của “Little Green Men” (những người xanh nhỏ). Tuy nhiên, cuối cùng họ và mọi người đều đi đến một kết luận ít lãng mạn hơn cho rằng những đối tượng đó - có tên là pulsar - thực tế là những sao neutron quay, có khả năng phát các xung sóng radio, do sự tương tác phức tạp giữa các từ trường của nó với vật chất xung quanh. Đây là một tin không mấy vui vẻ đối với các nhà văn chuyên viết về các chuyện phiêu lưu trong vũ trụ, nhưng lại đầy hy vọng đối với một số ít người tin vào sự tồn tại của lỗ đen thời đó: đây là bằng chứng xác thực đầu tiên về sự tồn tại của các sao neutron. Sao neutron có bán kính chừng mười dặm, chỉ lớn hơn bán kính tới hạn để ngôi sao trở thành một lỗ đen ít lần. Nếu một sao có thể co lại tới một kích thước nhỏ như vậy thì cũng không có lý do gì mà những ngôi sao khác không thể co lại tới một kích thước còn nhỏ hơn nữa để trở thành lỗ đen. Làm sao chúng ta có thể hy vọng phát hiện được lỗ đen, khi mà theo chính định nghĩa của nó, nó không phát ra một tia sáng nào? Điều này cũng na ná như đi tìm con mèo đen trong một kho than. May thay vẫn có một cách. Như John Michell đã chỉ ra trong bài báo tiên phong của ông viết năm 1983, lỗ đen vẫn tiếp tục tác dụng lực hấp dẫn lên các vật xung quanh. Các nhà thiên văn đã quan sát được nhiều hệ thống, trong đó có hai sao quay xung quanh nhau và hút nhau bằng lực hấp dẫn. Họ cũng quan sát được những hệ thống, trong đó chỉ có một sao thấy được quay xung quanh sao đồng hành (không thấy được). Tất nhiên, người ta không thể kết luận ngay rằng sao đồng hành đó là một lỗ đen, vì nó có thể đơn giản chỉ là một ngôi sao phát sáng quá yếu nên ta không thấy được. Tuy nhiên, có một số trong các hệ thống đó, chẳng hạn như hệ thống có tên là Cygnus X-1 (hình 6.2) cũng là những nguồn phát tia X rất mạnh. Hệ thống Cygnus X-1 có nguồn phát tia X mạnh (mũi tên trắng).
Cách giải thích tốt nhất cho hiện tượng này là vật chất bị bắn ra khỏi bề mặt của ngôi sao nhìn thấy. Vì lượng vật chất này rơi về phía đồng hành không nhìn thấy, nên nó phát triển thành chuyển động theo đường xoắn ốc (khá giống như nước chảy ra khỏi bồn tắm) và trở nên rất nóng, phát ra tia X (hình 6.3). Muốn cho cơ chế này hoạt động, sao đồng hành không nhìn thấy phải rất nhỏ, giống như sao lùn trắng, sao neutron hoặc lỗ đen. Từ quỹ đạo quan sát được của ngôi sao nhìn thấy, người ta có thể xác định được khối lượng khả dĩ thấp nhất của ngôi sao đồng hành không nhìn thấy. Trong trường hợp hệ thống Cygnus X-1 sao đó có khối lượng lớn gấp 6 lần mặt trời. Theo kết quả của Chandrasekhar thì như thế là quá lớn để cho sao không nhìn thấy là một sao lùn trắng. Nó cũng có khối lượng quá lớn để là sao neutron. Vì vậy, nó dường như phải là một lỗ đen...
Cũng có những mô hình khác giải thích rằng Cygnus X-1 không bao gồm lỗ đen, nhưng tất cả những mô hình đó đều rất gượng gạo. Lỗ đen là cách giải thích thực sự tự nhiên duy nhất những quan trắc đó. Mặc dù vậy, tôi đã đánh cuộc với Kip Thorne ở Viện kỹ thuật California, rằng thực tế Cygnus X-1 không chứa lỗ đen! Đây chẳng qua chỉ là sách lược bảo hiểm cho tôi. Tôi đã tốn biết bao công sức cho những lỗ đen và tất cả sẽ trở nên vô ích, nếu hóa ra là các lỗ đen không tồn tại. Nhưng khi đó tôi sẽ được an ủi là mình thắng cuộc và điều đó sẽ mang lại cho tôi bốn năm liền tạp chí Private Eye. Nếu lỗ đen tồn tại thì Kip được 1 năm tạp chí Penthouse. Khi chúng tôi đánh cuộc vào năm 1975 thì chúng tôi đã chắc tới 80% rằng Cygnus là lỗ đen. Và bây giờ tôi có thể nói rằng chúng tôi đã biết chắc tới 95%, nhưng cuộc đánh cuộc vẫn chưa thể xem là đã ngã ngũ.
Giờ đây chúng ta cũng có bằng chứng về một số lỗ đen khác trong các hệ thống giống như Cygnus X-1 trong thiên hà của chúng ta và trong hai thiên hà lân cận có tên là Magellanic Clouds. Tuy nhiên, số các lỗ đen chắc còn cao hơn nhiều; trong lịch sử dài dằng dặc của vũ trụ nhiều ngôi sao chắc đã đốt hết toàn bộ nhiên liệu hạt nhân của mình và đã phải co lại. Số các lỗ đen có thể lớn hơn nhiều so với số những ngôi sao nhìn thấy, mà chỉ riêng trong thiên hà của chúng ta thôi số những ngôi sao đó đã tới khoảng một trăm ngàn triệu. Lực hút hấp dẫn phụ thêm của một số lớn như thế các lỗ đen có thể giải thích được tại sao thiên hà của chúng ta lại quay với tốc độ như nó hiện có: khối lượng của các sao thấy được không đủ để làm điều đó. Chúng ta cũng có một số bằng chứng cho thấy rằng có một lỗ đen lớn hơn nhiều ở trung tâm thiên hà của chúng ta với khối lượng lớn hơn khối lượng của mặt trời tới trăm ngàn lần. Các ngôi sao trong thiên hà tới gần lỗ đen đó sẽ bị xé tan do sự khác biệt về hấp dẫn ở phía gần và phía xa của nó. Tàn tích của những ngôi sao đó và khí do các sao khác tung ra đều sẽ rơi về phía lỗ đen. Cũng như trong trường hợp Cygnus X-1, khí sẽ chuyển động theo đường xoắn ốc đi vào và nóng lên mặc dù không nhiều như trong trường hợp đó. Nó sẽ không đủ nóng để phát ra các tia X, nhưng cũng có thể là các nguồn sóng radio và tia hồng ngoại rất đậm đặc mà người ta đã quan sát được ở tâm thiên hà.
Người ta cho rằng những lỗ đen tương tự hoặc thậm chí còn lớn hơn, với khối lượng khoảng trăm triệu lần lớn hơn khối lượng mặt trời có thể gặp ở tâm các quasar. Vật chất rơi vào những lỗ đen siêu nặng như vậy sẽ tạo ra một nguồn năng lượng duy nhất đủ lớn để giải thích lượng năng lượng cực lớn mà các vật thể đó phát ra. Vì vật chất chuyển động xoáy ốc vào lỗ đen, nó sẽ làm cho lỗ đen quay cùng chiều tạo cho nó một từ trường khá giống với từ trường của trái đất. Các hạt có năng lượng rất cao cũng sẽ được sinh ra gần lỗ đen bởi vật chất rơi vào. Từ trường này có thể mạnh tới mức hội tụ được các hạt đó thành những tia phóng ra ngoài dọc theo trục quay của lỗ đen, tức là theo hướng các cực bắc và nam của nó. Các tia như vậy thực tế đã được quan sát thấy trong nhiều thiên hà và các quasar.
Người ta cũng có thể xét tới khả năng có những lỗ đen với khối lượng nhỏ hơn nhiều so với khối lượng mặt trời. Những lỗ đen như thế không thể được tạo thành bởi sự co lại do hấp dẫn, vì khối lượng của chúng thấp hơn giới hạn Chandrasekhar: Các sao có khối lượng thấp đó tự nó có thể chống chọi được với lực hấp dẫn thậm chí cả khi chúng đã hết sạch nhiên liệu hạt nhân. Do vậy, những lỗ đen khối lượng thấp đó chỉ có thể được tạo thành nếu vật chất của nó được nén đến mật độ cực lớn bởi một áp lực rất cao từ bên ngoài. Điều kiện như thế có thể xảy ra trong một quả bom khinh khí rất lớn: nhà vật lý John Wheeler một lần đã tính ra rằng nếu ta lấy toàn bộ nước nặng trong tất cả các đại dương thì ta có thể chế tạo được quả bom khinh khí có thể nén được vật chất ở tâm mạnh tới mức có thể tạo nên một lỗ đen. (Tất nhiên sẽ chẳng còn ai sống sót mà quan sát điều đó!). Một khả năng khác thực tiễn hơn là các lỗ đen có khối lượng thấp có thể được tạo thành dưới nhiệt độ và áp suất cao ở giai đoạn rất sớm của vũ trụ. Mặt khác những lỗ đen chỉ có thể tạo thành nếu vũ trụ ở giai đoạn rất sớm không trơn tru và đều đặn một cách lý tưởng, bởi vì chỉ cần một vùng nhỏ có mật độ lớn hơn mật độ trung bình là có thể bị nén theo cách đó để tạo thành lỗ đen. Nhưng chúng ta biết rằng nhất thiết phải có một số bất thường như vậy, bởi vì nếu không vật chất trong vũ trụ cho tới nay vẫn sẽ còn phân bố đều một cách lý tưởng thay vì kết lại thành khối trong các ngôi sao và thiên hà.
Những bất thường đòi hỏi phải có để tạo ra các ngôi sao và thiên hà có dẫn tới sự tạo thành một số đáng kể “lỗ đen nguyên thủy” hay không còn phụ thuộc vào chi tiết của những điều kiện ở giai đoạn đầu của vũ trụ. Vì vậy, nếu hiện nay chúng ta có thể xác định được có bao nhiêu lỗ đen nguyên thủy thì chúng ta sẽ biết được nhiều điều về những giai đoạn rất sớm của vũ trụ. Các lỗ đen nguyên thủy với khối lượng lớn hơn ngàn triệu tấn (bằng khối lượng của một quả núi lớn) có thể được phát hiện chỉ thông qua ảnh hưởng hấp dẫn của chúng lên các vật thể khác là vật chất thấy được hoặc ảnh hưởng tới sự giãn nở của vũ trụ. Tuy nhiên, như chúng ta sẽ biết ở chương sau, các lỗ đen xét cho cùng cũng không phải quá đen: chúng phát sáng như những vật nóng, và các lỗ đen càng nhỏ thì chúng phát sáng càng mạnh. Và như vậy một điều thật nghịch lý là các lỗ đen càng nhỏ thì càng dễ phát hiện hơn các lỗ đen lớn.
Stephen Hawking
Người dịch: Cao Chi, Phạm Văn Thiều
Không có nhận xét nào:
Đăng nhận xét